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ABSTRACT

AugmentedNet is a new convolutional recurrent neural
network for predicting Roman numeral labels. The net-
work architecture is characterized by a separate convolu-
tional block for bass and chromagram inputs. This layout
is further enhanced by using synthetic training examples
for data augmentation, and a greater number of tonal tasks
to solve simultaneously via multitask learning. This pa-
per reports the improved performance achieved by combin-
ing these ideas. The additional tonal tasks strengthen the
shared representation learned through multitask learning.
The synthetic examples, in turn, complement key transpo-
sition, which is often the only technique used for data aug-
mentation in similar problems related to tonal music. The
name ‘AugmentedNet’ speaks to the increased number of
both training examples and tonal tasks. We report on tests
across six relevant and publicly available datasets: ABC,
BPS, HaydnSun, TAVERN, When-in-Rome, and WTC. In
our tests, our model outperforms recent methods of func-
tional harmony, such as other convolutional neural net-
works and Transformer-based models. Finally, we show
a new method for reconstructing the full Roman numeral
label, based on common Roman numeral classes, which
leads to better results compared to previous methods.

1. INTRODUCTION

Automatic Chord Recognition (ACR) has been extensively
explored in the field of Music Information Retrieval (MIR).
ACR systems typically seek to predict the root and qual-
ity of the chords throughout a piece of music via either an
audio or a symbolic representation. A more specific type
of chordal analysis, particularly relevant for Western clas-
sical music, is functional harmony. The main difference
between ACR and functional harmony is that the latter re-
quires other adjacent tasks to be solved simultaneously,
notably including the detection and identification of key
changes (modulations [1, 2] and tonicizations [3]).

The analytical process of functional harmony is often
described through Roman numeral annotations. This an-
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notation system is particularly popular in Western music
theory for the analysis of ‘common-practice’ tonal mu-
sic. Roman numeral annotations encode a great deal of
information about tonality, in a compact syntax. For in-
stance, an annotation like C:viio6/V encodes the local key
(C-major), quality of the chord (diminished triad), chord
inversion (first), and any existing tonicization (G-major).

This ‘modular’ nature of Roman numeral annotations
has been beneficial to MIR research. In recent years, func-
tional harmony has been approached by dividing the main
task in several sub-tasks. Thus, as a machine learning
problem, functional harmony can be expressed as the task
of correctly predicting sufficient sub-tasks to reconstruct
the full Roman numeral label. Furthermore, recent work
in the standardization and conversion of Roman numeral
analyses has provided MIR researchers with a larger meta-
corpus of annotations for training new models [4, 5]. Yet,
despite these developments and the growing interest in the
field, the performance of functional harmony models for
predicting Roman numeral labels remains relatively low.

In this paper, we propose a new neural network
architecture that improves the prediction of functional
harmony and its relevant features. Besides the archi-
tecture itself, our model benefits from increased data
augmentation (beyond key transpositions), and an ad-
ditional set of output tasks that enhance the effects of
multitask learning demonstrated by other researchers [6].
To facilitate the work of other researchers, we release
all of our preprocessed datasets, data splits, experi-
ment logs, and the full source code of our network in
https://github.com/napulen/AugmentedNet.

2. RELATED WORK

For a summary of general ACR strategies, see Pauwels et
al. [7]. Here we focus on prior work in the specific area of
automatic functional harmonic analysis.

The first computational works on Roman numeral anal-
ysis were by Winograd [8] and Maxwell [9]. Later, the in-
dependent contributions by Temperley, Sleator, and Sapp
led to the first end-to-end automatic Roman numeral anal-
ysis system: a program named Melisma [10–12]. Notable
subsequent studies include Raphael and Stoddard [13],
Illescas et al. [14], and Magalhães and de Haas [15], who
proposed Hidden Markov Models (HMMs), dynamic pro-
gramming, and grammar-based approaches, respectively.

More recently, deep neural networks have become the
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preferred tool for approaching this problem. Chen and
Su [6] were the first to introduce ‘multitask learning’
(MTL) [16] to the problem as a suitable way for the neu-
ral network to share representations between related tonal
tasks. Chen and Su’s model consists of a bidirectional
LSTM [17] followed by task-specific dense layers, which
implement the MTL configuration. In this work, the au-
thors also introduced the ‘Beethoven Piano Sonata Func-
tional Harmony’ dataset for evaluating such models. The
MTL layout outperformed single-task configurations, and
it has continued to be the best-performing approach in sub-
sequent deep learning studies. Recently, the same authors
have adopted Transformer-based networks to deal with
functional harmony and ACR [18,19]. The work with these
networks has explored the capability of attention mecha-
nisms to improve the performance of ACR, paying special
consideration to chord segmentation and its evaluation.

Micchi et al. [20], in turn, proposed a convolutional
recurrent neural network (CRNN). The recurrent compo-
nent consists of a bidirectional GRU [21] connected to
task-specific dense layers, similar to those of Chen and
Su [6]. In their experiments, a DenseNet-like [22] con-
volutional component outperformed other configurations
(e.g., dilated convolutions or a GRU with pooling). Micchi
et al. also demonstrated the positive effect of using pitch
spelling in the inputs and outputs. This confers at least two
advantages: it provides a more informative output (e.g., not
only the correct key, but the correct spelling between two
enharmonic keys), and it increases the theoretical number
of transpositions available for data augmentation.

Here, we propose improvements along the line of
CRNNs. Due to our focus on extended data augmentation
and tonal tasks, we named our network AugmentedNet.

3. AUGMENTEDNET

The AugmentedNet is a similar network in size and design
to the one by Micchi et al. [20]. It is characterized by a
different layout of the convolutional layers, a new repre-
sentation of pitch spelling, and a separation of the bass and
chroma inputs into independent convolutional blocks.

3.1 Inputs

Reference note per timestep. The input to the net-
work consists of a sequence of timesteps, which are sam-
pled from the score at symbolically regular note dura-
tion values. In this study, we use the thirty-second
note (‘demisemiquaver’) as this atomic value (i.e., eight
timesteps per quarter note in the score), in order to match
the most fine-grained frame sampling seen in previous
work. The length of the sequence is set by a fixed number
of timesteps. Following Micchi et al., we set that number
at 640 frames (or 80 quarter notes) per sequence example.

Bass and spelled chroma features. The representation
of each timestep is conceptually the same as in Micchi et
al. [20], a vector containing a spelled bass note and spelled
chroma features. However, the length of our vectors is dif-
ferent. In the Micchi et al. representation, each timestep

has 70 features: 35 for the bass and 35 for the chroma fea-
tures. We consolidate this information in 38 features: 19
for the bass, and 19 for the chroma features. The reduction
in number of features is due to an alternative encoding of
pitch spelling, which we explain below.

Encoding the pitch spelling. We split the representa-
tion of a pitch spelling into two components: the pitch class
(0–12) and the generic note letter (A–G). Each spelled
pitch thus leads to a two-hot encoded vector with 19 fea-
tures (1 of 12 pitch classes, and 1 of 7 note names). This
reduces the number of parameters in the network without
any observable compromise in performance. Furthermore,
the spelled bass and chroma inputs are connected to the
network separately, in their own convolutional blocks. The
input to each block is a tensor of pitch spelling sequences.

3.2 Convolutional block

Using the feature maps of previous layers as an input to a
convolutional layer has proven beneficial, for instance, by
strengthening feature propagation and reducing the num-
ber of parameters [22]. Moreover, DenseNet-like archi-
tectures have shown to work well for the specific task of
functional harmony [20].

We follow similar methods, reusing the feature maps
computed for a given timestep in subsequent convolutions.
Figure 1 provides a schematic diagram of our network,
with the convolutional block on the top left area of the
figure. In our preliminary experiments, we noticed that
different tonal tasks have different time dependencies. For
example, losing information about a specific timestep of-
ten leads to poor performance in predicting the inversion,
whereas losing long-term context hinders the performance
in key estimation. Our architecture implicitly prioritizes
short-term dependencies in the initial convolutional layers,
by having more filters and covering less timesteps. Going
further, the convolutions provide more context about future
timesteps, but output less filters. These increments (in win-
dow size) and decrements (in number of filters) are done in
powers of 2. Using six convolutional layers in each block
(as shown in Figure 1), the first layer convolves a win-
dow of a single timestep (a thirty-second note), whereas
the sixth layer utilizes a window of 32 timesteps (a whole
note). The output shape of each block is the original length
of the sequence, with 82 features per timestep.

3.3 Dense and recurrent layers

Two time-distributed dense layers are applied to the con-
catenated outputs of the convolutional blocks. The dense
layers help to reduce the number of features before the
GRU layers. These have 64 and 32 neurons, respectively.

Two bidirectional GRU [21] layers are applied after the
second dense layer. Both GRU layers return outputs at ev-
ery timestep. Throughout the entire network, the dimen-
sionality of the timesteps axis remains constant. That is,
our input and output sequences have the same length, and
the model predicts one Roman numeral label per timestep.



Figure 1. AugmentedNet. The bass and chroma inputs are processed through independent convolutional blocks and then
concatenated. Both convolutional blocks are identical and expanded on the top of the figure. A convolutional block has six
1D convolutional layers. Each layer doubles the length of the convolution window and halves the number of output filters.
On the right, the MTL layout with eleven tasks. Each task indicates the number of output classes in parentheses.

3.4 Multitask learning

The output of the network follows an MTL approach with
hard parameter sharing, similar to the one by Chen and
Su [6]. For each of the output tasks, a time-distributed
dense layer is attached to the second GRU and used to pre-
dict its corresponding task. In the past, MIR researchers
have reconstructed Roman numeral annotations using six
tasks: the (local) key, the primary and secondary de-
grees, the chord quality, the chord inversion, and the chord
root [6, 20]. In our network, these six ‘conventional’ tasks
are learned as well, plus five new additional ones. All
eleven tasks and their number of output classes are shown
on the right side of Figure 1.

All the conventional tasks, except for the key, have
the same number of output classes described by Mic-
chi et al. [20]. The key includes four additional classes:
{F[,G], d[, e]}. These were included because our dataset,
larger than previous ones, revealed modulations reaching
G] major. Thus, the number of allowed key signatures was
extended by one sharp and one flat, in both modes.

3.4.1 Five additional new tasks

It is argued that MTL may improve the performance of a
model by preferring representations that are useful to re-
lated tasks, acting as an implicit form of data augmenta-
tion and regularization method [16]. Roman numeral la-
bels can be divided into different parts, of which the six
conventional tasks are known examples. Motivated by the
prospective improvement of our network, we included five
new additional tasks, which have relevance to harmonic
analysis. One of these tasks, CommonRNs, was used to
design an alternative method to reconstruct the full Ro-
man numeral label. The remaining four are included to
strengthen the shared MTL layers. We hypothesize that
these additional tasks (e.g. pitch class sets) improve the
accuracy of the model because of the MTL layout, even if
they are not explicitly used to predict the Roman numeral.

CommonRNs: during data exploration, we found that,

1–15 16–30 31–45 46–60 61–75
I V/V Ger viio7/v V+
V7 v N viio7/iii viio/vi
V V7/ii viio7/vi IV/V III+
i III V/ii I+ V/iii
IV iiø7 viiø7 I7 ii/V
ii iii V9 viio/IV I/[VI
vi iio viio/ii V/III viio7/IV
iv viio/V V/iv V7/iii V7/v
viio7 V7/vi Cad/V viio/iv i7
viio VII iv7 iio7 iii7
V7/V viio7/ii viio7/iv VI7 Fr
V7/IV I/V IV7 I/III V/IV
viio7/V V7/iv V7/III V7/VI vii
VI V/vi viiø7/V [VII V/v
ii7 vi7 It [VI II

Table 1. CommonRNs. The 75 most-common Roman nu-
meral classes found across the training set. Note that the
inversion has been omitted and learned as a separate task.

when inversions were removed and synonyms (e.g., [II6
and N6) were standardized, a set of 75 Roman numeral
classes spanned ~98% of all the annotations across the
training set (see Table 1). This was a motivation to pre-
dict these classes directly as an additional task. The cor-
rect prediction of this new task is equivalent to predicting
the primary and secondary degrees, chord root, and chord
quality simultaneously. As an additional experiment (see
Section 4.3), we tested an alternative new method to recon-
struct the Roman numeral labels, using the key, inversion,
and CommonRNs tasks. We refer to this method as RNalt.

Harmonic Rhythm: a binary classification task that in-
dicates whether a Roman numeral annotation starts at a
given timestep. It may be relevant for chord segmentation.

Bass: a multiclass classification task that indicates the
bass note in the Roman numeral label. This task has 35
output classes representing a pitch spelling, as in the chord



root task [20]. It is an alternative chord inversion task.
Tonicization: a multiclass classification task that indi-

cates a tonicized key implied by the Roman numeral label
(if any). The output classes are 34 keys, as in the key task,
and it is an alternative way to learn the secondary degrees.

Pitch Class Sets: a multiclass classification task that
indicates the set of pitch classes implied by the Roman nu-
meral chord. The number of classes (93) results from com-
puting all pitch class sets in all diatonic triad and seventh
chords, plus all augmented sixth chords in all keys. This
task is related to the chord quality, primary degree, and to
non-chord tones [23].

3.5 Data augmentation

3.5.1 Transposition

As in most automatic tonal music analysis research, we
transpose each piece to different keys as a form of data aug-
mentation. Particularly, we transpose to all the keys that
lie within a range of key signatures, in both modes. When
we transpose a piece, we verify that all the modulations
within the piece fall in the target range of key signatures.
This process of transposition and data augmentation was
introduced and described by Micchi et al. [20]. In our data
exploration, we found G] major to be the furthest key to
the center of the line-of-fifths [24] in the training set. Thus,
we transposed each piece across the keys with 8-flats and
8-sharps in their key signatures.

3.5.2 Synthetic data

In addition to transposition, we implemented a variation of
a previous data-augmentation technique by Nápoles López
and Fujinaga [25]. Starting with the Roman numeral anal-
yses of our dataset, we synthesized ‘new’ training exam-
ples by realizing the chords implied by each Roman nu-
meral annotation. The synthesis was done using the mu-
sic21 Python library [26], which converts RomanText [4]
files into scores of block chord realizations.

We found the default block chord texture of the syn-
thetic examples to be only slightly beneficial for the model,
possibly because it did not capture the complex texture of
real keyboard music, for example. In order to account for
this difference, we artificially ‘texturized’ the generated
training examples, departing from the default block chords.
The texturization was done by applying three note patterns
recursively (see Figure 2). These patterns were designed
intuitively, pursuing certain goals in the resulting texture.

Bass-split (measure 1): a pattern where the original
chord duration is divided by half, playing the bass in the
first half, and the remaining notes in the second. The goal
is to occasionally separate the bass from all other notes.

Alberti bass (measure 2): a 4-note melodic pattern with
a pitch contour of low-high-middle-high. The goal is to
occasionally play chords using a monophonic texture.

Syncopation (measure 3): a pattern where the highest
note is played first, followed by the rest of the notes, played
in syncopation. The goal is to occasionally shift the onset
of the bass from the onset of the Roman numeral label.

Figure 2. An example of texturization. The block chord
texture (b) was synthesized using music21 [26] from an in-
put RomanText file [4]. The texturized output (c) was gen-
erated by recursively applying note patterns to the block
chord scores. The three musical patterns of bass-split, Al-
berti bass, and syncopation are indicated in measures 1–3,
respectively. The original music score (a) is shown for ref-
erence: mm. 1–4 of Beethoven’s Piano Sonata Op.2 No.1.

Mixture (measure 4): we applied the three patterns ran-
domly and recursively. For example, the mixture in mea-
sure 4 displays a bass-split pattern over the whole-note
chord, followed by a syncopation pattern applied over the
three upper notes, in the second half of the measure.

As part of the randomization, some chords were left un-
altered (e.g., the anacrusis of Figure 2), and the patterns
were applied across different duration values. To constrain
the depth of the recursion, we applied these patterns only
to the slices of the score that contained 3–4 simultane-
ous notes. This process resulted in the generation of ‘new
pieces’ that showed improvements in the learning process
of the model, further than the block chord synthetic scores.

4. EXPERIMENTS

4.1 Datasets

We ran experiments using six datasets: Annotated
Beethoven Corpus (ABC) [27], Beethoven Piano Sonatas
(BPS) [6], Haydn “Sun” Quartets (HaydnSun) [28], Theme
and Variation Encodings with Roman Numerals (TAV-
ERN) [29], When-in-Rome 1 (WiR) [4, 5], and the Well-
Tempered Clavier (WTC) [4]. Table 2 shows a summary
of all datasets. The summary indicates the number of files
in each split and the number of sequences (each of 640
frames) that were collected from that split.

For all datasets, the same procedure was followed re-
garding data splits. Training, validation, and test splits
were produced randomly (except in BPS, where they were
provided by Chen and Su [6]). Preliminary experiments
were conducted in the training set, using the validation set

1 Note that, in practice, WiR is also a meta-collection and standardiza-
tion effort, where several of these datasets (e.g., TAVERN) have been con-
verted into a common representation. Here, we list the academic sources
of the datasets. For the annotation files, please refer to the relevant litera-
ture [4, 5] as well as the accompanying source code of this paper.



Files (Seqs)
Dataset Training Validation Test
ABC [27] 50 (448) 10 (97) 10 (99)
BPS [6] 18 (155) 7 (75) 7 (82)
HaydnSun [28] 16 (91) 4 (19) 4 (19)
TAVERN [29] 38 (404) 8 (68) 8 (64)
WiR [4, 5] 107 (301) 21 (61) 21 (51)
WTC [4] 12 (25) 6 (13) 6 (14)
Total 241 (1424) 56 (333) 56 (329)

Table 2. The functional harmony datasets used in our ex-
periments. The splits were generated randomly (except for
BPS). For each split, the number of files and the number of
sequences (in parentheses) are indicated.

to assess the performance, adjust the hyperparameters, and
inform the design of the network architecture. The best-
performing version of our model was run once in the test
set, this time including the validation portion as part of the
training. The results obtained for all the rows labeled Full
dataset in Table 4 report the results obtained on the corre-
sponding test split.

Data augmentation. For every training example, we
synthesized and texturized an additional file, using only
the Roman numeral annotations (and ignoring the original
score). The original and texturized training examples were
transposed to different keys for further data augmentation.
Both forms of data augmentation were applied to the train-
ing set of a particular experiment, leaving the validation
and test sets intact, in order to prevent any data leakage.

4.2 Training procedure

Epochs. We set a fixed number of 100 epochs in all ex-
periments. We found that the use of early stopping was
unreliable to determine the end of the training process. In-
stead, we saved the weights after each epoch. At the end,
we selected the weights that maximized the mean accuracy
across the six conventional tasks.

Other hyper-parameters. Each of the layers in the
network is accompanied by batch normalization [30] be-
fore the activation function. In the recurrent layers, we
apply the batch normalization after the activation function.
All convolutional and dense layers use the rectified linear
unit (ReLU) as their activation function. However, the two
GRU layers use a hyperbolic tangent. In all of our exper-
iments, we used 16 sequences per batch and the rmsprop
optimizer [31], with a learning rate of 10−3.

Computing time. The network was trained on a per-
sonal laptop 2 with a Linux operating system, Tensorflow
v2.4.1 [32], and GPU acceleration. With these hardware
and software conditions, the training times are approxi-
mately 30 minutes (BPS only), 40 minutes (BPS+WTC),
and 250 minutes (Full dataset). The number of trainable
parameters in the network is close to 90,000. This number
already includes all the parameters introduced by the addi-

2 Intel i7 10750h, Nvidia RTX 2070, 32 GB DDR4.

Model Key Deg. Qual. Inv. Root RN

AugN6 82.7 64.4 76.6 77.4 82.5 43.3
AugN6+ 83.0 65.1 77.5 78.6 83.0 44.6
AugN11 81.3 64.2 77.2 76.1 82.9 43.1
AugN11+ 83.7 66.0 77.6 77.2 83.2 45.0

Table 3. Average accuracy (in %) of four configurations
of our model, where {6, 11} indicate the number of MTL
tasks and ‘+’ indicates the use of synthetic training data.

tional output tasks. Therefore, the model is similar in size
to recent approaches [19, 20].

4.3 Results

AugmentedNet configurations. Table 3 summarizes the
performance of different AugmentedNet configurations.
For example, with or without the additional tasks, and
with or without synthetic data. The configurations were
trained on each of the six datasets individually, for a to-
tal of 24 experiments. The accuracy reported is the aver-
age accuracy obtained by each model configuration across
all six datasets. Based on the reported accuracy values,
the AugmentedNet11+ (with additional tasks and synthetic
training examples) is the best-performing configuration.
Thus, in subsequent experiments, we compare this config-
uration against the current state-of-the-art models.

In the past, functional harmony models have been eval-
uated using the Beethoven Piano Sonatas (BPS) dataset [6,
18, 20]. The most recent model [19] has also been evalu-
ated using the Well-Tempered Clavier (WTC) dataset [4].
We provide direct comparisons in these two datasets, in so
far as that is possible, replicating the experimental condi-
tions of the previous models. In addition, we also report
the results of our model across the remaining datasets.

Beethoven Piano Sonatas. The last rows of Table 4
show the results on the BPS dataset. Single lines in the
table delimit experiments that are directly comparable. For
example, the upper rows of BPS compare the results of
Micchi et al. [20] using all of their available training data
and our model using the larger dataset available to us now.

Well-Tempered Clavier. Above the BPS rows, in Ta-
ble 4, we show the evaluation on the WTC dataset. The
CS21 model presented the results over 4-fold cross valida-
tion [19]. We replicate this study for direct comparison. 3

In these rows, we report the average accuracy across the
four folds, as well as the standard deviation.

The results show that our model outperforms both the
recent convolutional methods [20] and Transformer-based
ones [19] in the reconstruction of the full Roman numeral
labels. For ABC, HaydnSun, TAVERN, and WiR, we show
the generalization of our model when using all the training
data available on the corresponding test set. Finally, we
show the overall performance of our model in a composite
test set that includes all six datasets (first row of Table 4).

3 But we used our test split for the Full dataset experiment in WTC.



Test set Training set Model Key Degree Quality Invers. Root ComRN RNconv RNalt

Full test set Full dataset AugN 82.9 67.0 79.7 78.8 83.0 65.6 46.4 51.5

WiR Full dataset AugN 81.8 69.2 85.9 90.3 90.3 70.2 56.4 62.4

HaydnSun Full dataset AugN 81.2 62.9 80.2 82.7 86.5 60.4 48.6 52.1

ABC Full dataset AugN 83.6 65.6 78.0 76.9 78.9 62.6 44.5 48.4

TAVERN Full dataset AugN 88.7 60.0 77.4 78.8 81.5 66.3 42.6 52.9

WTC Full dataset AugN 77.2 69.7 75.0 74.4 82.7 61.7 46.2 47.9
WTCcrossval BPS+WTC AugN 85.1(4.0) 62.9(5.5) 69.1(1.9) 70.1(3.7) 79.2(1.8) 59.9(3.4) 42.9(4.2) 46.9(4.7)

WTCcrossval BPS+WTC CS21 56.3(2.5) - - - - - 26.0(1.7) -

BPS Full dataset AugN 85.0 73.4 79.0 73.4 84.4 68.3 45.4 49.3
BPS All data Mi20 82.9 68.3 76.6 72.0 - - 42.8 -
BPS BPS+WTC AugN 82.9 70.9 80.7 72.0 85.3 67.6 44.1 47.5
BPS BPS+WTC CS21 79.0 - - - - - 41.7 -
BPS BPS AugN 83.0 71.2 80.3 71.1 84.1 68.5 44.0 47.4
BPS BPS Mi20 80.6 66.5 76.3 68.1 - - 39.1 -
BPS BPS CS19 78.4 65.1 74.6 62.1 - - - -
BPS BPS CS18 66.7 51.8 60.6 59.1 - - 25.7 -

Table 4. Accuracy of five functional harmony models: Chen and Su (2018, 2019, and 2021), Micchi et al. (2020), and
AugmentedNet11+. In the WTC test set, the comparison against CS21 replicated the 4-fold cross validation [19]. In this
case, the standard deviation is indicated in parentheses. For all other rows, the results report the performance on the held
test set. The values in the RNalt column indicate the performance using an alternative method for reconstructing the full
Roman numeral, as explained in Section 3.4.1.

The RNconv and RNalt methods. As discussed in Sec-
tion 3.4.1, it is possible to use the 75 most-common Roman
numeral classes as an alternative task to the chord root,
chord quality, and primary and secondary degree tasks.
Thus, an alternative resolution of the Roman numeral label
(RNalt) is presented in the last column of the Augmented-
Net results. This accuracy corresponds to the reconstruc-
tion of the full Roman numeral using the key, chord in-
version, and CommonRNs. We found that this, in fact,
leads to better results compared to the conventional method
(RNconv), which reconstructs the full Roman numeral la-
bels using the six conventional tasks. Table 4 shows the
accuracy values for both methods. For completeness, we
also show the accuracy of the CommonRNs output task.
For this task, note that the maximum achievable accuracy
is ~98%, because any class that is not present in the set of
75 CommonRNs will be misclassified.

In summary, the Full dataset rows show the best results
achieved by our model for each dataset. In all cases, the re-
sults of our model are higher than existing methods in the
final reconstruction of the Roman numeral label. Addition-
ally, the best results in the reconstruction are achieved via
the RNalt method, instead of the conventional one (RNconv).

5. CONCLUSION

We present advances in the use of CRNNs to predict Ro-
man numeral labels. In Beethoven Piano Sonatas (BPS)
and the Well-Tempered Clavier (WTC) datasets, our net-

work outperforms existing models in the prediction of the
conventional tonal tasks and the reconstruction of the full
Roman numeral labels. Furthermore, we demonstrate that
the use of an additional task, CommonRNs, is helpful
to achieve better results in the final reconstruction step,
compared to the conventional method used in previous re-
search. Although we present these general improvements
in accuracy, we have not yet assessed the chord segmen-
tation of our model, leaving that for future work. Further-
more, we consider that several ideas presented here may
be useful in future automatic tonal music analysis research,
notably: (1) the use of additional tonal tasks in functional
harmony and, (2) the use of texturized synthetic training
examples. Although five additional tasks were presented,
there are more potential tasks that can be examined, such
as triad vs. seventh classification, tonal function (T, D, and
SD), or cadence detection. Our method for synthesizing
‘new’ training examples applied three note patterns to tex-
turize block chords. We developed this method based on
observation and music theory domain-knowledge. A more
sophisticated approach could offer better texturization out-
puts. We consider this to have the most potential impact
on functional harmony research, because the data is still
scarce and expensive to annotate. Although current models
have yet to reach the expectations of MIR researchers and
musicologists alike, we hope that this goal is not too far.
Through the use of new techniques, deep learning models
may soon achieve unprecedented results in complex music
analytical processes, such as Roman numeral analysis.
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