
Encoding Matters
Néstor Nápoles

McGill University, CIRMMT
Montréal, QC

nestor.napoleslopez@mail.mcgill.ca

Gabriel Vigliensoni
McGill University, CIRMMT

Montréal, QC
gabriel@music.mcgill.ca

Ichiro Fujinaga
McGill University, CIRMMT

Montréal, QC
ichiro.fujinaga@mcgill.ca

ABSTRACT
In this paper, we discuss how different encodings in symbolic music
files can have consequences for music analysis, where a truthful
representation, not only of the musical score, but of the semantics
of the music, can change the results of music analysis tools. We
introduce a series of examples in which different encodings effec-
tively modify the content of two—apparently equivalent—symbolic
music files. These examples have been obtained from comparing
three different encodings of a string quartet movement by Ludwig
van Beethoven.

We present two scenarios in which encoding discrepancies may
be introduced. In the first scenario, they have been introduced dur-
ing the encoding of the symbolic music file by either the music
notation software or the human encoder. The discrepancies intro-
duced in this scenario are typically difficult to notice because they
are visually identical to an accurate encoding. In the second sce-
nario, the discrepancies have been introduced during the translation
of the original file into other symbolic formats. In this scenario, the
discrepancies may be related to propagating errors in the original
encoding or to an erroneous translation of certain attributes of
the musical content. Finally, we discuss the possibility of using
the examples provided here for the mitigation of some of these
discrepancies in the future.

CCS CONCEPTS
• Information systems→Music retrieval; • Software and its
engineering→ Extensible Markup Language (XML); Software de-
sign tradeoffs; Software libraries and repositories; • Applied com-
puting → Sound and music computing;

KEYWORDS
Symbolic music, music notation, music encoding, music transcrip-
tion, music information retrieval, musicxml, mei, humdrum, verovio,
humlib, vis, music21

ACM Reference Format:
Néstor Nápoles, Gabriel Vigliensoni, and Ichiro Fujinaga. 2018. Encoding
Matters. In 5th International Conference on Digital Libraries for Musicology
(DLfM ’18), September 28, 2018, Paris, France. Paris, France, 5 pages. https:
//doi.org/10.1145/3273024.3273027

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DLfM ’18, September 28, 2018, Paris, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6522-2/18/09. . . $15.00
https://doi.org/10.1145/3273024.3273027

1 INTRODUCTION
The content of music scores stored in digital music libraries has
one of two forms, either scores stored as images (e.g., scans of
a manuscript) or a content-based representation (e.g., staff, clef,
voices, pitches, durations) in a symbolic music file [5]. Whenever
we want to visualize a music score, images might be enough. For
example, a scan of the music score document allows a digital music
library to distribute a digital version that users can access and
visualize in electronic devices. However, in activities that require
searching or browsing through the content of the score (e.g., finding
instances of a particular melody within the score or counting the
number of occurrences of all notes), images are certainly not enough.
In these cases, a content-based representation of the score is needed.

The additional benefit of having a content-based representa-
tion is that it is typically possible—and easy—to generate a new
rendering of the music score from it. In this way, content-based
representations are able to produce the visualization of a music
score at the same time they provide access to its musical content.
Unfortunately, encoding a content-based representation of a music
score is a time-consuming process that involves, in most cases, the
use of music notation software. For this reason, content-based rep-
resentations are still scarce and digital music libraries mainly offer
the musical content in their catalogues as scanned images [3, 5].
With the improvement of Optical Music Recognition (OMR) tech-
nologies, we expect digital music libraries to transition from images
and scans to content-based representations more easily. Meanwhile,
we rely in music notation software for encoding content-based
representations of music scores.

When a music score is encoded using music notation software,
the main feedback given to the user is the visualization of the score
itself. Most music notation software follow the well-known What
You See Is What You Get (WYSIWYG) paradigm, which is widely
used for different editing applications. One particular problem that
arises from this is that two symbolic scores might look almost
identical visually, however, their underlying encodings may be
nonequivalent. These differences may emerge due to discrepancies
introduced by the users who encode the music score, but also due to
assumptions from the software that imports or exports the symbolic
music files.

In the following sections, we explore the discrepancies that have
been found in three encodings produced by different human en-
coders using different music notation software.

2 METHODOLOGY
Before we introduce the distinct types of discrepancies found in
the encodings, we will briefly describe the encodings we used, their
source, and the software that was used to produce them.

https://doi.org/10.1145/3273024.3273027
https://doi.org/10.1145/3273024.3273027
https://doi.org/10.1145/3273024.3273027

DLfM ’18, September 28, 2018, Paris, France Néstor Nápoles, Gabriel Vigliensoni, and Ichiro Fujinaga

2.1 Encodings
We have selected three different—publicly available—encodings of
the first movement of the string quartet composed by Ludwig van
Beethoven, Op.18 No.1.

The music notation software used to produce the encodings are:
Finale,1 MuseScore,2 and Sibelius.3

2.1.1 Finale encoding. This encoding was obtained from the
Gutenberg project.4 According to the documentation, this encoding
was produced by Geof Pawlicki. The score is freely available in
Finale’s proprietary format .MUS. We have used Finale v25.4.1.163
to export it as a MusicXML file.

2.1.2 MuseScore encoding. This file was obtained from the com-
munity of MuseScore users, where it can be freely downloaded in
several formats, for example, MuseScore’s proprietary format .mscz.
This encoding was produced by Gavin Ailes. We used MuseScore
v2.2.1 to export it as a MusicXML file.

2.1.3 Sibelius encoding. This encoding has been obtained from
Tes,5 a global network of education professionals. The music score
has been submitted by the user dunhallin and it is available for
purchase in Sibelius’ proprietary format .SIB. We used Sibelius
v2018.1 to export it as a MusicXML file.

In each case, we have made sure that the music notation software
used to generate the MusicXML files is the latest stable version
available. That is also true for the software used to translate the
MusicXML files that we describe next.

2.2 Translations
When parsing symbolic music files, it is common that the software
will only accept a certain number of symbolic formats. Whenever
that happens, it may be necessary to translate the original file into
other formats. Therefore, in addition to comparing the different
encodings, we are also interested in investigating the effects of
translating a file into other symbolic formats. For this reason, two
additional symbolic music formats have been used: the Music En-
coding Initiative (MEI) format, and Humdrum (**kern).

2.2.1 Music Encoding Initiative (MEI). The Verovio toolkit is an
engraving library for MEI files[6]. As part of its features, it can be
used to translate MusicXML files into MEI. We used the Verovio
toolkit v2.0.0 to translate the MusicXML files into MEI.

2.2.2 Humdrum (**kern). We used the musicxml2hum program
inside the humlib6 library to translate the MusicXML files into
Humdrum (**kern).

2.3 Randomization
Because our aim is to evaluate the differences between encodings
and not finding out if one encoding is better than another, we
have anonymously named the different encodings. We refer to
them as Encoding A, B, and C. In the same manner, we refer to

1https://www.finalemusic.com/
2https://musescore.org/en
3https://www.avid.com/sibelius
4https://www.gutenberg.org/wiki/Gutenberg:The_Sheet_Music_Project
5https://www.tes.com/
6https://github.com/craigsapp/humlib

Figure 1: Symbolic files used for the comparisons. The top
row represents the score document. The three boxes in the
second row represent a MusicXML exported from a specific
music notation software. The boxes in the third row repre-
sent a translation of the exported MusicXML to two addi-
tional symbolic music files.

the translations as Translation A1, A2, B1, B2, C1, and C2. Figure 1
summarizes the randomized identifiers.7

3 FINDING ENCODING DISCREPANCIES
Having already introduced the source of the encodings, music nota-
tion software, translation software, and randomized identifiers, we
now introduce our procedure for finding encoding discrepancies.

3.1 Procedure
In order to discover discrepancies between two different encodings,
we list—for each instrument in both encodings—all the onsets in
which new notes or rests appear. We refer to these as note/rest
onsets. Two note/rest onsets are considered identical if they start at
the same time (i.e., onset synchronicity) and have the same value
(i.e., both are the same note or both are rests). Figure 2 shows a
summary of the comparisons between all three encodings. Blank
sections within the plot indicate that at least one instrument has
a different value compared to the other encoding. If an encoding
was compared to itself, the plot would have no blank sections. The
data used for this plot has been obtained by using music21 [2] and
VIS-framework [1]. To allow reproducibility, we make this code
available.8

The summary of the comparisons presented in Figure 2 serves as
a reference for finding zones of discrepancy between two encodings.
In order to investigate the cause of the discrepancies, we manually
inspected the rendering of the music score and the MusicXML file
of a selected subset of discrepancies. We present a list of discrepan-
cies that occur frequently. We have divided this list in two parts:
discrepancies that are more related to music notation software and
discrepancies that are more related to decisions made by human
encoders.9

3.2 Related to music notation software
Music notation software may contribute to introducing discrep-
ancies, for example, when it allows human encoders to export

7The exact correspondence to the source, music notation software, and translation
software that produced the symbolic music files can be requested from the authors.
8https://www.github.com/napulen/encoding_matters
9Although we recognize that this division can be ambiguous in some cases.

https://www.finalemusic.com/
https://musescore.org/en
https://www.avid.com/sibelius
https://www.gutenberg.org/wiki/Gutenberg:The_Sheet_Music_Project
https://www.tes.com/
https://github.com/craigsapp/humlib
https://www.github.com/napulen/encoding_matters

Encoding Matters DLfM ’18, September 28, 2018, Paris, France

Figure 2: Summary of the comparison between the threemu-
sic encodings. The horizontal axis represents the combined
sequence of note/rest onsets in chronological order. Blank
zones indicate discrepancies between the encodings.

inconsistent encodings (e.g., an incomplete or an overrun measure).
More commonly, it may introduce discrepancies due to software
bugs and unexpected behaviors.

3.2.1 Unclosed tie. One example of an unexpected behavior
involves tied notes, more precisely, unclosed tied notes. In order
to interpret the length of a tie, MusicXML parsers typically rely
in music notation software to explicitly provide the starting and
ending notes of a tie. In some cases, however, ties may start at a
certain note and not end, that is, they remain unclosed. This leads to
an ambiguous interpretation of the duration of a tie. Figure 3 shows
an example of this discrepancy, the tied E♭ in the upper voice of
Violin II remains unclosed in the note of the next measure, where it
is supposed to end. The interpretation of where this tie ends varies
depending on the software that parses the MusicXML file.

Figure 3: Unclosed tie. Encoding B, measures 41–45.

3.2.2 Incomplete measure. The next two examples involve the
discrepancy of the duration of a measure and the duration of the
notes within the measure. These are important because different
software may also interpret them in different ways, moreover, these
are important because once they happen, they propagate for the
rest of the score. The first example is an incomplete measure.

Figure 4: Incomplete measure. Encoding B, measures 152–
154. The half note at mm. 152 should be a dotted half note.

Figure 4 shows an example of an incomplete measure in Encoding
B. The half note in the first measure of the score snippet from Violin
II is meant to be a dotted half note.

3.2.3 Overrun measure. Figure 5 shows a contrary example to
the previous one. In this case, the human encoder that produced
Encoding B has accidentally placed an augmentation dot in the third
high-C note of Violin I. Figure 6 shows the interpretation of another
music notation software when parsing the same MusicXML output.

Figure 5: Extraneous augmentation dot that overrruns the
duration of the measure (Encoding B, measures 168–170).
The augmentation dot is located in the third high-C.

Figure 6: Interpretation of the music in Figure 5 in a differ-
ent music notation software.

3.3 Related to human encoders
During this research, we have observed that the discrepancies re-
lated to music notation software involve corner-cases and ambi-
guities in how musical content is encoded. On the other hand, the
discrepancies linked to human encoders are more related to the dif-
ficulty of visually perceiving differences between two music scores.
In the overrun measure example presented above, a human encoder
could be careful of correcting such errors, however, the articulation
dots may easily obstruct the possibility of noticing the error in the
first place.

3.3.1 Slurs for ties. A similar discrepancy—and more difficult to
perceive—occurs when the human encoder places, by mistake, a slur
symbol instead of a tie. This type of discrepancy is important for
two reasons: 1) the visual representation of slurs and ties is close to
identical, 2) a tied note does not generate a new onset of the note (i.e.,
the first note will be played and held for the duration of both tied
notes), contrarily, a slur does. Due to the almost indistinguishable
visual representation, it is hard to find these discrepancies without
the aid of automated tools.

Figure 7: The first two notes of Violin I have been slurred
instead of tied. Encoding C, measures 1–2.

Figure 7 shows an example of this discrepancy found when
inspecting Encoding C. Other examples of this type of discrepancy
have been found in Encoding B.

DLfM ’18, September 28, 2018, Paris, France Néstor Nápoles, Gabriel Vigliensoni, and Ichiro Fujinaga

3.3.2 Repeated notes, trills, and grace notes. Many discrepancies
in note/rest onsets shown in Figure 2 come from whether human
encoders decide to explicitly repeat a sequence of notes with the
same note value or use abbreviation symbols instead (e.g., slashes).
Musically speaking, they are analogous, however, the symbolic files
may be interpreted differently by music notation, and particularly,
music analysis software. Figure 8 shows an example of this dis-
crepancy between Encodings A and B. Similar examples have been
found for trills, grace notes, and other ornaments.

Figure 8: Discrepancy in the notation of repeated notes be-
tween two encodings. Encoding A (left) and B (right), mea-
sures 30–31. The discrepancy is located in the Viola part of
measure 30.

4 FINDING TRANSLATION DISCREPANCIES
We have also decided to investigate the discrepancies introduced by
translations of symbolic music formats. We present the procedure
and results of six comparisons, two translations for each original
encoding. We hypothesize that each note/rest onset in the original
encoding should be found in the translation. That is, a note/rest
onset should exist in the translation, such that, it is synchronized
(i.e., starts at the same time), has the same note/rest value, and the
same attributes as a note/rest onset in the original encoding.

4.1 Procedure
For each instrument in the encoding, we iterate over every note/rest
onset attempting to find a synchronized note/rest onset in the
translation, if one is found, we verify that the note/rest value and
the additional properties are identical. The additional properties
we consider are duration, articulations, and ornaments.10

Table 1 shows the percentage of onsets that have been found
in the translation. We separate these percentages in three cate-
gories: synchronized note/rest onsets that are identical, synchro-
nized note/rest onsets that have different properties, and note/rest
onsets that were not found in the translation. TheNon-sync category
indicates the amount of note/rest onsets from the original encoding
that were not found in the same location in the translation.

4.2 Translations A1, B1, and C1
These translations correspond to the same symbolic music format.
It can be observed from Table 1 that, for all three encodings, the
translation process was able to replicate all of the onsets in the same
position as they were in the original encoding. After inspecting
10These properties are validated using the default comparison of note, rest, and chord
objects in music21. We rely on the accuracy of this process to guarantee the quality of
our results.

Table 1: Comparison of note/rest onsets between transla-
tions. Synchronized and non-sync indicate whether the on-
sets in the encoding exist in the same location of the trans-
lation or not. For synchronized onsets, identical or different
indicate if the attributes have been preserved.

Encoding vs. Translation Synchronized Non-sync
Identical / Different

A vs. A1 95.2% / 4.8% 0.0%
A vs. A2 6.1% / 48.5% 45.4%
B vs. B1 95.1% / 4.9% 0.0%
B vs. B2 18.6% / 5.3% 76.1%
C vs. C1 94.4% / 5.6% 0.0%
C vs. C2 26.1% / 2.3% 71.6%

the conflicting note/rest onsets, we conclude that discrepancies in
the note/rest values and attributes are related mainly to grace notes
encoded with a different duration attribute in the translated file.

4.3 Translations A2, B2, and C2
Similarly, these translations correspond to the same symbolic music
format. The number of de-synchronized note/rest onsets surpasses
the number of synchronized ones. At some point during the trans-
lation process, propagation errors (e.g., overrun measure) displace
the offset of new note/rest onsets in the translated symbolic format,
causing discrepancies with the original encoding.

5 CONCLUSIONS
In this paper, we have presented examples of discrepancies in sym-
bolic music files that were encoded by different human encoders
and music notation software. We also investigated the discrepancies
introduced when these files were translated into other symbolic
music formats. Several of the discrepancies repeat systematically in
the form of patterns (e.g., users place a slur between two notes of the
same pitch when they meant to place a tie or incomplete measures
are interpreted differently in distinct music notation software).

In many cases, developing better methodologies for symbolic
music corpora creation [4] should set the basis for reliable data and
reproducible research, however, whenever this is not sufficient, de-
tecting the patterns leading to discrepancies—as the ones described
here—seems to be a promising and worthy effort in the comparison,
evaluation, and, possibly, the auto-correction of symbolic music
files, which is in the interest of music researchers and digital music
libraries.

For now, we know that searching or browsing through the con-
tent of symbolic music files leaves the user with an additional
responsibility, the responsibility of knowing that encoding matters.

6 ACKNOWLEDGEMENTS
This research has been supported by the Social Sciences and Hu-
manities Research Council of Canada (SSHRC) and the Fonds de
recherche du Québec—Société et culture (FRQSC).

Encoding Matters DLfM ’18, September 28, 2018, Paris, France

REFERENCES
[1] Christopher Antila and Julie Cumming. 2014. The VIS Framework: Analyzing

counterpoint in large datasets. In Proceedings of the 15th International Society for
Music Information Retrieval Conference. Taipei, Taiwan, 71–76.

[2] Michael Scott Cuthbert and Christopher Ariza. 2010. music21: A toolkit for
computer-aided musicology and symbolic music data. In Proceedings of the 11th In-
ternational Society for Music Information Retrieval Conference. Utrecht, Netherlands,
637–642.

[3] Audrey Laplante and Ichiro Fujinaga. 2016. Digitizing musical scores: Challenges
and opportunities for libraries. In Proceedings of the 3rd International Workshop on
Digital Libraries for Musicology. New York, NY, 45–48.

[4] Cory McKay and Julie Cumming. 2018. Methodologies for creating symbolic early
music corpora for musicological research. In Proceedings of the 19th International
Society for Music Information Retrieval Conference. Paris, France.

[5] Laurent Pugin. 2015. The challenge of data in digital musicology. Frontiers in
Digital Humanities 2 (2015), 4.

[6] Laurent Pugin, Rodolfo Zitellini, and Perry Roland. 2014. Verovio: A library for
engraving MEI music notation into SVG. In Proceedings of the 15th International
Society for Music Information Retrieval Conference. Taipei, Taiwan, 107–112.

	Abstract
	1 Introduction
	2 Methodology
	2.1 Encodings
	2.2 Translations
	2.3 Randomization

	3 Finding encoding discrepancies
	3.1 Procedure
	3.2 Related to music notation software
	3.3 Related to human encoders

	4 Finding translation discrepancies
	4.1 Procedure
	4.2 Translations A1, B1, and C1
	4.3 Translations A2, B2, and C2

	5 Conclusions
	6 Acknowledgements
	References

