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ABSTRACT

In this paper, we describe a workflow of successive cor-
rections on Optical Music Recognition (OMR) generated
MusicXML files and their respective outputs under Mu-
sic Information Retrieval (MIR) tasks. The original OMR-
generated files of six Mendelssohn String Quartets were
initially corrected by individual members of this interdisci-
plinary group, then reviewed by others to further standard-
ize the quality and music analysis priorities of the team.
Four MIR tasks are applied to each round of corrections
on this collection: cadence detection, chord labeling, key
finding, and monophonic pattern discovery. We measure
changes in the outputs of these four MIR tasks from one
round of corrections to the next in order to evaluate the
impact of corrections. Results show that expert revision
is more beneficial to some MIR tasks than to others. The
resulting corpus of curated MusicXML files is available
as an open-source repository under a Creative Commons
Attribution 4.0 International License for further MIR re-
search.

1. INTRODUCTION

Music Information Retrieval (MIR) algorithms that ana-
lyze symbolic music require high-quality data to produce
accurate results. When building symbolic music corpora
for MIR research, manually transcribing data using music
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notation software is expensive [1].

A faster option might be to use Optical Music Recogni-
tion (OMR) software on existing images of printed scores
as an initial step. For example, Condit-Schultz et al. [2]
worked on automated harmonic analysis of 571 chorales
by Johann Sebastian Bach and Michael Praetorius. OMR
was used in the process of creating symbolic encodings,
with the results reviewed and manually corrected by a hu-
man annotator. Cumming et al. [3] created symbolic cor-
pora of Renaissance music using OMR-generated scores as
the first step and followed strict guidelines of manual cor-
rections for the retention, addition, or removal of specific
notations such as ties and fermatas. Although the perfor-
mance of OMR applications has been improving over the
years [4], extensive manual revisions are still required to
ensure data quality and consistency for MIR analysis. This
expensive and time-consuming task is especially relevant
for OMR-induced errors since small ambiguities can lead
to substantial variation in analytical output [5]. What are
the impacts of expert curation on data for MIR analysis
tasks?

We answer this question using files produced in the pro-
cess of building a symbolic corpus of Mendelssohn string
quarters. The OMR-generated passed through three iter-
ations of increasingly-stringent manual corrections with-
out additional annotations. We measured the impact of
each round of corrections on four MIR analysis tasks (key
finding, chord labeling, melodic pattern discovery, and ca-
dence detection) through the changes between each iter-
ation. Expert analysis of the scores exposes the types of
errors to which these tasks are sensitive, demonstrating the
need to tune corpus content to the anticipated analyses.
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2. CORPUS CREATION

2.1 Mendelssohn String Quartets

Our corpus consists of the string quartets of Felix
Mendelssohn. The Classical string quartet is a particularly
relevant genre for computer-assisted analysis of music. In
contrast to piano repertoire, where voice leading is often
obscured by the limitations of the performer’s hands and
by what can be notated on the grand staff, a string quar-
tet score preserves the independent parts of four separate
instruments, allowing attribution of the role of each part
(such as melody, bass, accompaniment, leading and imita-
tive voices, etc.). The Classical aesthetic is characterized
by a very clear harmonic, melodic, and formal organiza-
tion, so it is not surprising that Beethoven’s and Mozart’s
string quartets have already been encoded and annotated
[6, 7] for music analytical purposes. Mendelssohn’s string
quartets are a natural next step; his works have Clas-
sical characteristics that place them in the tradition of
Beethoven’s late quartets [8].

Specifically, we encoded quartets Op. 12, Op. 13, and
Op. 44, Nos. i, ii, and iii, all composed between 1827 and
1847, and Four Pieces for String Quartet, Op. 81. 1 The
initial OMR encodings of these 24 movements were gener-
ated from scans of the 1875 edition published by Breitkopf
und Härtel, available as PDF files on IMSLP. 2 ) Although
not part of the set studied in this paper, an additional quar-
tet, Op. 80, is incorporated in our final published corpus.
It had been previously encoded in MusicXML 3 by user
Musemeister.

2.2 The CTS Team

An interdisciplinary team of nine people collaborated to
create this corpus, with members from music technology,
music theory, string performance, and music cognition.
Each member brought unique viewpoints, skillsets, and ob-
jectives to the project. Whether they were interested in a
specific MIR task or the applications of MIR to music the-
ory, cognition, or pedagogy, team members refined encod-
ing objectives together to satisfy their varied interests dur-
ing the iterative correction and cleaning of OMR-generated
symbolic music files.

2.3 From PDF to MusicXML

The first step in building the corpus was to transcribe the
PDF files into a symbolic, machine-readable format. We
used the commercial OMR software PhotoScore to ana-
lyze the original score images in PDF. It first detected the
position of each staff on the page and we ensured that these
detected positions were correct, adjusting as necessary. We
also manually corrected the key and time signatures. The
OMR results were then exported to MusicXML because
the format is widely supported by music notation soft-
ware. These files formed the Corrections 0 dataset “C0”,

1 These four independent pieces were gathered up in one opus and
published after Mendelssohn’s death.

2 Downloadable at https://bit.ly/2zzS0Bk.
3 Downloadable at https://bit.ly/3dRC9wZ.













       
 


       


 

 































 

 

 
















Figure 1. Measures 60-62 of Op. 44, No. iii, Mvt. 4.
The upper system is initial OMR output (C0) and the lower
system is after three rounds of manual corrections (C3).

with no additional manual corrections of score informa-
tion. All subsequent corrections were made using Mus-
eScore v2.3.2.

2.4 OMR Corrections

Starting from these initial OMR-generated music files (C0)
we applied three successive stages of manual corrections:
“C1”, “C2”, and “C3”. The goal of each stage was to
improve the accuracy of the previous stage(s) and to en-
sure that all information necessary for the MIR algorithms
was included. The original C0 files included score ele-
ments both unlikely to be used by existing symbolic MIR
algorithms and deemed by the team’s music theorists to be
less essential for the specific analytical approaches that we
chose. Many of these score elements—for example, hair-
pin dynamics—were ignored or removed during the rounds
of corrections (for a full list, refer to the supplementary
materials).

The focus of C1 was accuracy of pitch and rhythm,
while elements such as dynamic markings and articulations
were largely ignored in the interest of time. As work pro-
gressed, it became clear which errors were most common
in the OMR output. For example, there were many mis-
aligned or missing notes in passages with higher note den-
sity (see Figure 1). The OMR software frequently encoded
ties as slurs and vice versa. Despite their visual similar-
ity, these curved lines produce different rhythmic values of
notes, with consequences for our MIR analysis algorithms.
Mendelssohn’s scores also included many detailed perfor-
mance instructions, prompting lengthy discussions about
what information should be preserved in the final dataset
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Figure 2. Measures 14-19 of Op. 13, Mvt. 2.

and what should be left out. With a more rigorous pro-
tocol in place, we reviewed each other’s work to produce
C2. The main purpose of this phase of review was to en-
sure that no errors had been missed in the previous round
of revision. Again, during C2, details of the score came
to light that necessitated further discussion, and the varied
perspectives of the multidisciplinary team informed deci-
sions about how to proceed. For example, double-stops,
where more than one string is played at once, posed a re-
curring challenge. While chords on a staff line can be en-
coded in most analysis systems, Mendelssohn wrote many
passages with moving lines against held notes (see Fig-
ure 2). This texture is easily misinterpreted by algorithms
unfamiliar with the particularities of string music. Ulti-
mately, note accuracy and articulation of onsets (namely,
ties, slurs, and staccatos) were prioritized, while most in-
dications of dynamics and ornamentation were excluded:
a trade-off between comprehensiveness and machine inter-
pretability.

Finally, the last round of corrections (C3) was a review
to align all the encodings according to the conclusions of
discussions during C2 and to standardize formatting and
metadata. A full account of the score elements preserved
in the final dataset is included in the supplementary materi-
als. For consistency, a single person reviewed all the move-
ments in preparing C3. Further discussion is provided in
Section 4.1.

2.5 Differences between Correction Rounds

Besides a qualitative report on the amount of correc-
tions we made in each round, quantitative measurement
of the scale of changes is possible on these digital files.
As the ideal MusicXML tool [9] is not publicly avail-
able with open source code, we used the more generic
SequenceMatcher.quick_ratio() from Python’s
difflib library to produce percent differences. The me-
dian and range of similarity scores between C0 and C1, C1
and C2, and C2 and C3 are shown in Table 1.

Interpreting these numbers directly is difficult as Mu-
sicXML files include a plethora of elements beyond the
focus of our corrections. Still, it is reassuring to see the me-
dian difference between successive corrections decrease by
an order of magnitude each round. If all file modifications
had the same impact on the MIR analyses, their outputs
would show a similar pattern of decreasing impact.

Comparison Pair
Percent Difference
median [min, max]

C0 to C1 10.0% [2.8%, 21.8%]
C1 to C2 1.3% [0.0%, 7.3%]
C2 to C3 0.2% [0%, 1.3%]

Table 1. Percent difference for each comparison pair. The
results are medians across all 24 movements, with maxi-
mum and minimum values indicated in brackets.

3. MIR ALGORITHMS

Four symbolic MIR algorithms were applied to each ver-
sion of the Mendelssohn String Quartet Corpus. These al-
gorithms were chosen because they were either designed
or extensively used by members of the CTS team. Without
ground truth annotations to assess the accuracy achieved
by each MIR tasks, the corrections were evaluated through
their perceivability to the algorithms in output changes be-
tween successive versions. 4 For two of the tasks that pro-
duce sequences of annotations, results from different ver-
sions of the same movement had to be aligned to one an-
other before comparison; this procedure is detailed in the
supplementary materials. In total, 96 evaluations per task
were performed as each analysis algorithm was applied to
all four versions of the 24 movements in the corpus.

3.1 Key Analysis

A recent key-finding algorithm [10] provided two predic-
tions: global key per movement and local key per onset
slice. We ran the algorithm using the default parameters
provided in the implementation. Between C0 and C1, pre-
dictions of global key changed in 3 of the 24 files tested.
There was no change in prediction between C1, C2, and
C3. Predictions of local key changed substantially between
C0 and C1 across all files, and changed much less between
C1 and C2, and between C2 and C3, as shown in Table 2.

Comparison pair
Changes in local key annotations

median(%) [min(%), max(%)]
C0 to C1 46.8% [9.9%, 71.1%]
C1 to C2 0.4% [0.0%, 9.8%]
C2 to C3 0.0% [0.0%, 3.0%]

Table 2. Percent differences in local key annotations for
each comparison pair. The results are medians across all
the 24 movements with minimum and maximum values in-
dicated in brackets.

3.2 Chord Labeling

The automatic chord labeling model [11] was applied to
each stage of the dataset, predicting chords for every onset
slice of the piece.

4 E.g. comparing the outputs of a key-finding algorithm applied to C0
and C1.
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Comparison Pair
Changes in chord labels

median(%) [min(%), max(%)]
C0 to C1 69.1% [17.5%, 96.7%]
C1 to C2 0.7% [0.0%, 41.1%]
C2 to C3 0.0% [0.0%, 12.5%]

Table 3. Percent difference in chord annotations for each
comparison pair, shown as medians across all the 24 move-
ments with minimum and maximum values indicated in
brackets.

Each chord is labelled according to its root (C, F], B[,
etc.) and its quality (major, minor, fully diminished sev-
enth, dominant seventh, etc.), with no mention of its inver-
sion or its harmonic function (Roman numeral analysis).

The results are shown in (Table 3). We can see dif-
ferences between C0 and C1 were substantial (median
69.1%), while the percent change between C1 and C2 was
much smaller (median 0.7%). The majority of the move-
ments showed no change in chord labels between C2 and
C3 (median 0.0%). Such results indicate that chord la-
belling is not sensitive to local differences.

3.3 Monophonic Pattern Discovery

The SIARCT-C Algorithm [12] was used on each version
of each movement to discover sets of repeating patterns.
A “pattern” here refers to a set of excerpts of a piece that
are all nearly identical in pitch and rhythm under trans-
position. While the algorithm is capable of operating on
polyphonic music, here we focus on finding monophonic
patterns between voices. To this end, each MusicXML
file was transformed into point sets of (onset time in quar-
ter notes, morphetic pitch) pairs; for example, the first
measure of the first violin’s part in Figure 1 is notated
as the sequence (69, 0) (69, 1) (71, 2) (71,
2.75). Dynamics, articulatons, and durations are dis-
carded. Some algorithmic pattern discovery methods do
use this kind of information, such as the Automatic Time-
span Tree Analyzer [13], but the majority use only rhyth-
mic and pitch-related data, partially due to the computa-
tional complexity of the problem. The four voices in each
file were concatenated into one sequence for the purpose
of evaluation.

We searched only for patterns that were at least eight
notes long that occurred at least five times within each
movement, allowing for a small amount of variation. These
parameters were chosen as a compromise in light of the
number of movements we had to analyze and the running
time of the algorithm; searches for short patterns take sig-
nificantly longer than searches for long patterns. We illus-
trate the effect of iterative corrections by their impact on
descriptive statistics of these results: the number of unique
patterns detected, the coverage of these patterns over all
notes in the music, and the median cardinality (i.e., num-
ber of instances) of each pattern discovered. 5

5 Comparing sets of discovered patterns is difficult because of their
highly heterogeneous structure, with individual patterns spanning a wide

Table 4 shows how these statistics change between ver-
sions. Many more patterns were found in C1 than in C0
(median 85%, maximum 2100%), with a small amount of
gain and loss from C1 and C2, and no change in total from
C2 to C3. Coverage also grew substantially from C0 to
C1, including more than twice the number of notes after
this first round of corrections for more than half the move-
ments. In contrast, the median cardinality did not change
as drastically for those patterns detected in these different
versions, and no apparent changes occurred during the last
round of corrections.

Comp.
Pair

Magnitude Increase, median [min, max] (%)

Num. Patterns Coverage Cardinality

C0 to C1
85% 110% 8.3%

[16%, 2100%] [21%, 1100%] [-22%, 29%]

C1 to C2
0.0% 0.041% 0.0%

[-5.1%, 7.1%] [0.85%, 9.8%] [-3.4%, 3.5%]

C2 to C3
0.0% 0.0% 0.0%

[0.0%, 0.0%] [0.0%, 0.0%] [0.0%, 0.0%]

Table 4. Median magnitude increase in three statistics
taken on the sets of discovered patterns over the course of
the corrections. Minimal and maximal values for change
are shown in brackets.

Comparison
pair

Change in
PACs detected

New PACs
detected

PACs lost

C0 to C1
154.5%
22 to 56

177.3%
39

22.7%
5

C1 to C2
-3.6%

56 to 54
1.8%

1
5.4%

3

C2 to C3
1.9%

54 to 55
3.7%

2
1.9%

1

Table 5. Change in the number of PACs detected. ‘New
PACs detected’ report the number of PACs detected in the
latter that were not in the former. ‘Lost PACs’ is the num-
ber of PACs that were in the former but not the latter. As
the number of PACs detected is quite small, both relative
changes and exact numbers are given.

3.4 Cadence Detection

Finally, the cadence detection algorithm introduced by
Bigo et al. [14] was used to detect perfect authentic ca-
dences (PACs) 6 throughout the corpus. Each beat was
evaluated as a potential point of cadential arrival using a
Support Vector Machine. As there are only few cadences
within single movements, Table 5 reports the results of

range of cardinalities and number of notes per instance. While it is pos-
sible to devise a more direct evaluation based on similarities between in-
dividual patterns, we used an approach based on descriptive statistics for
the sake of brevity and interpretability.

6 Too few cadences of other types, such as half cadences, were suc-
cessfully detected to interpret sensibly in this context.
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this evaluation as a count of cadences detected rather than
percent change. As expected, the model benefited greatly
from the initial round of corrections: twice as many ca-
dences were identified in C1 files as in C0 files. Additional
rounds of reviews had little impact on the total number of
PACs detected. Close investigation of the differences be-
tween detected cadences in C1, C2 and C3 revealed that
some changes in the algorithm’s output were due to cor-
rections in notated pitch.

4. DISCUSSION

The different rounds of corrections prompted a wide range
of considerations for the group, which are discussed below.
Proofreaders with different kinds of expertise, whether in
MIR, music theory, string musicianship, or the use of the
chosen music notation software, communicated various
concerns and discoveries relating to their respective tasks.
Finally, special situations are discussed, in which music
theoretical and analytical considerations collide with MIR
objectives in notable ways.

4.1 MIR Significance of Correction Rounds

Using OMR to create datasets of symbolic music is an at-
tractive proposition. Our results suggest that there is sig-
nificant variation in the quality of the output between files
when using software like PhotoScore. No task evaluated
here was able to totally overcome the errors introduced
by OMR, with all of the results seeing some amount of
change after the first round of corrections, and the degree
of change in this initial round varied widely between tasks.
Global key estimations changed for only 3 of the 24 move-
ments, while the discovered patterns on the raw OMR out-
put bear little resemblance to those discovered after just
one round of corrections. However, these findings cannot
be extrapolated directly to other algorithms that perform
the same tasks; different machine-learning methods may
cause models to become more sensitive to some errors and
less sensitive to others. For the specific algorithms applied
here, we may consider this as evidence that the underlying
symbolic-musical structures they use to make judgments
are affected by errors in the OMR process to different mag-
nitudes. For most tasks, though, initial correction is neces-
sary when using OMR to create datasets, given the current
capabilities of commercially-available OMR software.

For subsequent rounds of corrections, the sizes of
changes shrink dramatically but still vary between tasks.
In particular, the discovered patterns barely change at all
after the first round of corrections; this is likely due to
the fact that the algorithm uses only onset times and mor-
phetic pitch, thus ignoring some pitch changes with har-
monic consequences.

4.2 Experience of Doing Corrections

For the members of our team with solid experience in
copying music, correcting OMR required an average time
of 30 to 45 minutes per printed page depending on the va-
riety and amount of errors. To review Mendelssohn’s com-

plete string quartets (C0 to C1) thus took approximately
75 to 110 hours. Even though the standardization step
(C1 to C2) in itself was much shorter (5 to 15 minutes per
printed page, or an approximate total of 25 hours), discus-
sions concerning what should be kept and what should be
ignored lasted over a month. Finally, checking the consis-
tency represented 30 additional hours (C2 to C3). While
the dataset at C3 was standardized to meet the require-
ments of our analysis tasks, one might wonder whether
investing this amount of time was necessary.

Different movements, and different passages within in-
dividual movements, required vastly different degrees of
effort to correct. In some sections, only corrections to
articulations and accidentals were needed, whereas other
sections needed to be completely rewritten. The first round
of corrections (C0 to C1) was the most difficult, involv-
ing many decisions about which elements of the score
to preserve. Some time-consuming corrections had to be
rolled back after standardization protocols had been de-
cided on. This round of corrections was particularly dif-
ficult for proofreaders who had never used MuseScore.
Certain features of the program, such as the addition of
key signatures, introduced multiple additional errors when
used incorrectly, while some features that might have saved
time, such as batch addition of articulation marks, went un-
used through much of the correction process. There were
a few musical situations that tended to produce predictable
errors in the OMR encoding. Errors frequently arose when
the OMR software missed or misplaced rests, and proof-
readers quickly learned that passages with higher note den-
sity required much more effort to correct.

4.3 Musical Considerations

Figure 1 gives a general sense of the differences between
the initial (C0) and final (C3) stages of the correction pro-
cess. These differences fall into two broad categories:
“pitch-rhythm” differences in the vertical (pitch) or hori-
zontal (rhythm) placement of notes and “notational” dif-
ferences in articulations, ornaments, and other non-pitch
elements of the score. Pitch-rhythm differences had a large
effect on the outcomes of analysis tasks. Pitches that were
incorrect (Vla., m. 61), misaligned (Vln. 1, m. 62), miss-
ing (Vla., m. 62), or extraneous (Vln. 2, m. 61; Vc., m.
60) affected all four analysis tasks. Notational differences
in tremolos (Vln. 2 & Vla., mm. 60-62), and slurs (Vln.
1, m. 60) had a smaller effect on the outcomes of analysis
tasks, but could be disruptive in MIR tasks that make use of
recurring notational cues, especially for pattern finding or
cadence detection. For example, Mendelssohn often uses
slurs, staccatos, and dynamic markings such as hairpins to
highlight recurring motives. When these motives are trans-
posed or altered non-uniformly, as in the tonal answer of a
fugue or the development section of a sonata-form move-
ment, they may become undetectable by pattern-finding al-
gorithms that rely exclusively on pitch and rhythm. An
analyst relying on these results may be led to misinterpret
larger tonal, hypermetric, and formal structures if, for ex-
ample, the algorithm fails to detect a main theme at the
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beginning of a returning section. Algorithms that also con-
sider articulations and dynamic markings might perform
better in situations like these. One other complication is
that PhotoScore sometimes generates hidden rests (Vla. m.
61), slowing the correction process by making the score
less readable to humans.

Extraneous or incorrect clefs were found in four of 24
movements during the final round of corrections (C3). In
the fourth movement of Op. 44 No. iii, an incorrect
(French violin) clef in the first violin transposed the part
up by a major third. This error persisted through several
rounds of correction because it was obscured by system
breaks. Incorrect clefs had a large effect on key-finding,
chord-labeling, and cadence-detection tasks, but not on the
transposition-invariant pattern discovery task.

Another recurring issue concerns multiple voices within
a single staff (i.e., “double-stops” on a string instrument).
While this is possible to encode in MusicXML format, it is
often unreadable to the software used for analysis tasks. In
these cases, the encoder must decide which voice to keep
and which to discard, which can result in the loss of infor-
mation. In Op. 13, Mvt. 2, mm. 16-17 (see Figure 2),
the cello plays both a held C (in red) along with a mov-
ing line D-E-F. Without the moving line, the C becomes a
pedal at the bottom of the texture, changing the harmonic
and cadential sense of the music. In Op. 13, Mvt. 3, mm.
143-53, the cello and violin II have melodic lines below
a harmonic pedal resulting in two-note chords for each of
them. Choosing one voice or the other is difficult: keep-
ing the pedal tones preserves the harmony, allowing for the
detection of cadences and chords; keeping the melodic mo-
tives allows for the discovery of more patterns throughout
the movement. Deciding what to keep depends on the type
of analysis to be carried out.

4.4 Implications for OMR

The initial errors in OMR files disproportionately impacted
these tasks: a 10% change in the MusicXML files pro-
duced a 47% change in local key judgments and a 69%
change in chord labels. This proportion of incorrect re-
sults underlines how this commercial software struggled
with these scores. One cause was missing notes: runs
of sixteenths and eighths typical of this genre of music
were often dropped, when the dense or complicated stem-
mings were incorrectly interpreted. The numerous ar-
ticulation and ornamentation markings were often misin-
terpreted as notes, suggesting poor recognition of shapes
within staves. There was also confusion between parts
in the four staff systems, with notes and text annotations
packed more tightly in vertical arrangements than in other
genres and publication styles. Software tuned to this era
and style of work would hopefully reduce the amount of in-
formation lost. However, given the variety in performance
quality across these scores, human supervision is highly
recommended.

5. CONCLUSION

This project is a case study in how human corrections on
OMR can influence MIR analysis results. The range of
outcomes across these analyses suggests that the value of
human correction time depends on the MIR task. If some
noise in the results is permissible and one is only inter-
ested in large-scale qualities like global key, the raw OMR
files may suffice, but anything closer to the notes would
benefit from some review and correction. Without human
intervention, half of the outputs for local key detection and
chord labeling were corrupted, while monophonic pattern
discovery and cadence detection missed substantial por-
tions of the relevant material in most pieces.

The second and third rounds of corrections had pro-
gressively smaller effects on the aggregate results of these
analyses, as expected, but there are instances when these
smaller changes were crucial for the type of analysis at
hand. Passing the symbolic music files between multiple
reviewers minimized the impact of human error. Some of
the changes in these later rounds were motivated by new
understanding of the music, music encoding limitations,
and what could be used by our MIR algorithms.

This project is not representative of all symbolic mu-
sic corpus-building with OMR. PhotoScore was not nec-
essarily the best OMR processor for string quartet music
printed in 1875. The sensitivity of these MIR analysis
tasks on changes in symbolic music information is also
specific to their implementations; a study of monophonic
patterns that included articulation or dynamics would tell a
different story from that above. However, the novel com-
parison process across iterations of corrections highlights
the importance of expert musical care in the developing of
symbolic music corpora, as well as the need for explicit
acknowledgement of the types of score information pre-
served therein.

Discussions between team members about the potential
relevance of ornamentation and articulation to each ana-
lytical objective resulted in a set of files that contained
more information than could be used by the algorithms ap-
plied here. At the same time, important layers like dynam-
ics were removed because of the difficulty of producing
machine-interpretable encodings. We hope to see that the
retained layers of performance information are used in fu-
ture work with this collection of symbolic scores, and that
symbolic music encoding and analysis tools continue to
progress towards capturing a richer range of musical in-
formation. The final version of this Mendelssohn String
Quartet Corpus, a pedagogical, scholarly, and artistic re-
source for musicians, composers, and music researchers
alike, can be downloaded from: https://github.
com/DDMAL/felix_quartets_got_annotated.

While OMR can be a helpful tool for corpus building,
such projects still require human expertise in both the mu-
sic represented and in its intended uses. For MIR-related
research, some tasks benefit from manual review more than
others.
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