Musical Genre Recognition based on Deep Descriptors of Harmony, Instrumentation, and Segments

Igor Vatolkin¹, Mark Gotham², Néstor Nápoles López³, Fabian Ostermann¹

¹Department of Computer Science, TU Dortmund University ²Department of Arts and Sports Sciences, TU Dortmund University ³Centre for Interdisciplinary Research in Music Media and Technology, McGill University

igor.vatolkin@tu-dortmund.de;mark.gotham@tu-dortmund.de; nestor.napoleslopez@mail.mcgill.ca;fabian.ostermann@tu-dortmund.de

Overview

- Combination of deep and shallow algorithms for recognition of musical genres
- Deep convolutional neural network (CNN) models for prediction of harmonic, instrumental, and segment properties
- Predictions of relative strengths of 51 or 31 different instruments in a 2s time frame
- Trained either with 5,000 samples and chords generated by mixing of individual samples after [3] or AAM (3,000 tracks) [4]
- **Table 2:** Deep instrument features estimated for classification frames
 of 4s with 2s step size
- Evaluation
- Let tp be true positives, tn true negatives, fp false positives, and fn false negatives
- Balanced relative error:

Shallow classifiers for prediction of 19 genres

• Significant reduction of classification errors after evolutionary feature selection compared to previous work

Classification Framework

Figure 1: Data flow in the proposed classification framework

Deep Harmonic Properties

Features	Dim.				
Predictions trained with chords					
Mean relative strength of 51 predicted instruments	1–51				
(acoustic and electric guitar, organ, piano and electric					
piano, viola, violin, etc.)					
Standard deviation of the relative strength of 51 predicted	52–102				
instruments					
Minimum relative strength of 51 predicted instruments	103–153				
Maximum relative strength of 51 predicted instruments	154–204				
Predictions trained with artificial tracks					
Mean relative strength of 31 predicted instruments	205–235				
(subset of 51 instruments)					
Standard deviation of the relative strength of 31 predicted	236–266				
instruments					
Minimum relative strength of 31 predicted instruments	267–297				
Maximum relative strength of 31 predicted instruments	298–328				

Deep Segment Properties

Results: Tables

Table 4: Test e_b for 19 musical genre recognition tasks. [3]: the best results reported in that work; MFCCs: Mel frequency cepstral coefficients; Harm: deep harmonic features listed in Table 1; Inst: deep instrument features listed in Table 2; Segm: deep segment features listed in Table *3;* All: all deep features; All-FS: the best feature set after evolutionary feature selection. Bolded values are the best (smallest) for each genre in the current study. A bolded value using italic font marks a sole case where an error of [3] was lower than the lowest error in our study.

	Random forests						
Genre	[3]	MFCCs	Harm	Inst	Segm	All	All-FS
Alternative	0.1928	0.2847	0.4861	0.3148	0.4375	0.3218	0.2431
Blues	0.3170	0.4028	0.3727	0.3495	0.4954	0.4259	0.1921
Childrens	0.3880	0.5069	0.5116	0.4329	0.3148	0.3102	0.2685
Classical	0.0929	0.1250	0.5231	0.0995	0.2106	0.2083	0.0833
Comedy	0.2214	0.3333	0.3634	0.3125	0.2894	0.3125	0.2407
Country	0.2350	0.3472	0.4190	0.2199	0.3843	0.3403	0.1273
Easy List.	0.2904	0.2894	0.4537	0.3542	0.3542	0.3866	0.2245
Electronic	0.1487	0.3843	0.2731	0.0926	0.3472	0.2454	0.0370
Folk	0.2682	0.3935	0.4236	0.3449	0.5440	0.3264	0.1852
Hip-Hop	0.1240	0.3495	0.4954	0.1065	0.2477	0.2824	0.0880
Jazz	0.3123	0.3889	0.3681	0.3519	0.5231	0.4514	0.2523
Latin	0.3049	0.5069	0.5694	0.4028	0.5231	0.3704	0.2940
New Age	0.2349	0.3056	0.5139	0.2731	0.3773	0.3750	0.1505
R'n'B	0.2534	0.2731	0.4144	0.2500	0.4213	0.2616	0.1898
Reggae	0.1941	0.3194	0.5069	0.2454	0.4375	0.3912	0.1875
Religious	0.3759	0.4352	0.3634	0.3912	0.5093	0.3611	0.2523
Rock/Pop	0.2346	0.2870	0.5579	0.2894	0.6273	0.2963	0.1343
Soundtr.	0.2652	0.2708	0.5926	0.3079	0.4190	0.3750	0.2616
World	0.4059	0.3403	0.4144	0.5069	0.5046	0.4745	0.2662
		S	upport v	vector m	nachines	S	
Alternative	0.1656	0.2593	0.4282	0.2546	0.5000	0.2639	0.2060
Blues	0.3030	0.4074	0.3449	0.2546	0.5000	0.2847	0.2153
Childrens	0.3366	0.5185	0.5162	0.4769	0.5000	0.5000	0.1944
Classical	0.0885	0.0903	0.4190	0.0810	0.5000	0.1574	0.0833
Comedy	0.2360	0.3542	0.3519	0.3426	0.5000	0.2431	0.1782
Country	0.2247	0.3565	0.4352	0.2407	0.5000	0.2940	0.1319
Easy List.	0.2980	0.2315	0.4514	0.4259	0.5000	0.5000	0.2477
Electronic	0.1448	0.2245	0.3380	0.1412	0.5000	0.1806	0.0532
Folk	0.2621	0.3449	0.4190	0.3495	0.5000	0.4167	0.1736
Hip-Hop	0.1201	0.2431	0.5185	0.0671	0.5000	0.5000	0.0810
Jazz	0.2680	0.4190	0.2708	0.3588	0.5000	0.3356	0.2338
Latin	0.3168	0.4514	0.5509	0.4838	0.5000	0.5602	0.2593
New Age	0.2122	0.2685	0.4745	0.2894	0.5000	0.5000	0.1921
R'n'B	0.2594	0.3380	0.4514	0.2593	0.5000	0.4236	0.2014
Reggae	0.1872	0.2546	0.5301	0.2523	0.5000	0.3449	0.1690
Religious	0.3751	0.3981	0.4005	0.3935	0.5000	0.3912	0.2269
Rock/Pop	0.2390	0.2014	0.5648	0.2917	0.5000	0.4120	0.1389
Soundtr.	0.3108	0.2593	0.5231	0.3773	0.5000	0.3403	0.2431
World	0.3604	0.3472	0.4954	0.4306	0.5000	0.3495	0.2731

Figure 2: Architecture of the AugmentedNet [1]

- Multitask outputs related to harmonic rhythm, chord, and key properties
- Trained with audio chromagrams of 353 annotated music pieces instead of symbolic chromagrams from the original approach

Table 1: Deep harmonic properties estimated for classification frames
 of 4s with 2s step size

Features	Dim.				
Predictions trained with AugmentedNet					
Mean and standard deviation of harmonic rhythm	1–2				
Relative frequency of specific notes in the alto	3–24				
Relative frequency of specific notes in the bass	25–47				
Relative frequency of specific roots of local keys	48–71				
Relative frequency of specific notes in the soprano	72–92				
Relative frequency of specific notes in the tenor	93–112				
Relative frequency of specific roots of tonicized keys	113–136				
Relative frequency of specific roman numerals	137–160				
Relative frequency of modes (major or minor)	161–162				
Total number of different symbols	163–171				

- Statistics of predicted segment boundaries of different types after [6]
- Trained with either SALAMI [7] (1,359 tracks) or AAM (3,000 tracks) [4]

Table 3: Deep segment statistics estimated for complete audio tracks

Features	Dim.					
Predictions trained with SALAMI						
Number of segments	1					
Mean segment length	2					
Standard deviation of the segment length	3					
Maximal segment length	4					
Minimal segment length	5					
Mean deviation of segment length	6					
Predictions trained with artificial tracks						
Segment statistics as for SALAMI, trained to detect	7–12					
all boundaries						
Segment statistics as for SALAMI, trained to detect	13–18					
instrument boundaries						
Segment statistics as for SALAMI, trained to detect	19–24					
key boundaries						
Segment statistics as for SALAMI, trained to detect	25–30					
tempo boundaries						

Setup of Experiments

Dataset

Conclusions

- Performance of complete individual deep feature groups or also all of them often rather poor, because of too many irrelevant dimensions
- After feature selection identifying the most relevant features, the errors are lowest for 17 of 19 genres
- Future work: integration of other deep predictors and more robust classification models

Deep Instrument Properties

Figure 3: Architecture of the CNN after [2]

- 1517-artists [8]: 19 genres
- 16 "positive" + 18 "negative" training tracks per genre
- 228 test tracks
- -228 optimization sets for feature selection (see below) • Features
- Instrument- and timbre-related features from [3]
- Mel frequency cepstral coefficients (MFCCs)
- All deep harmonic features
- All deep instrument features
- All deep segment features
- All deep features
- Best sets after evolutionary feature selection following [9]
- Classifiers
- Random forests
- Support vector machines

References

- [1] N. Nápoles López, M. Gotham, and I. Fujinaga: A Roman Numeral Analysis Network with Synthetic Training Examples and Additional Tonal Tasks. Proc. ISMIR, 404–411 (2021)
- [2] Y. Han, J.-H. Kim, and K. Lee: Deep Convolutional Neural Networks for Predominant Instrument Recognition in Polyphonic Music. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(1):208–221 (2017)
- [3] I. Vatolkin, B. Adrian, and J. Kuzmic: A Fusion of Deep and Shallow Learning to Predict Genres Based on Instrument and Timbre Features. Proc. EvoMUSART, 313–326 (2021)
- [4] F: Ostermann, I. Vatolkin, M. Ebeling: AAM: a Dataset of Artificial Audio Multitracks for Diverse Music Information Retrieval Tasks. EURASIP Journal on Audio, Speech, and Music Processing volume, 2023, 13 (2023)
- [5] T. Grill and J. Schlüter: Music Boundary Detection Using Neural Networks on Combined Features and Two-Level Annotations. Proc. ISMIR, 531-537 (2015)
- [6] I. Vatolkin, F. Ostermann, and M. Müller: An Evolutionary Multi-objective Feature Selection Approach for Detecting Music Segment Boundaries of Specific Types. Proc. GECCO, 1061–1069 (2021)
- [7] J. B. L. Smith, J. A. Burgoyne, I. Fujinaga, D. De Roure, J. S. Downie: Design and Creation of a Large-scale Database of Structural Annotations. Proc. ISMIR, 555-560 (2011)
- [8] K. Seyerlehner, G. Widmer, and P. Knees: Frame Level Audio Similarity a Codebook Approach. Proc. DAFx (2008)
- [9] I. Vatolkin, G. Rudolph, C. Weihs: Evaluation of Album Effect for Feature Selection in Music Genre Recognition. Proc. ISMIR, 169–175 (2015)