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Abstract. Deep learning has recently established itself as a cluster of
methods of choice for almost all classi�cation tasks in music information
retrieval. However, despite very good classi�cation performance, it some-
times brings disadvantages including long training times and higher en-
ergy costs, lower interpretability of classi�cation models, or an increased
risk of over�tting when applied to small training sets due to a very large
number of trainable parameters. In this paper, we investigate the com-
bination of both deep and shallow algorithms for recognition of musical
genres using a transfer learning approach. We train deep classi�cation
models once to predict harmonic, instrumental, and segment properties
from datasets with respective annotations. Their predictions for another
dataset with annotated genres are used as features for shallow classi�-
cation methods. They can be trained over and again for di�erent cate-
gories, and are particularly useful when the training sets are small, in
a real world scenario when listeners de�ne various musical categories
selecting only a few prototype tracks. The experiments show the poten-
tial of the proposed approach for genre recognition. In particular, when
combined with evolutionary feature selection which identi�es the most
relevant deep feature dimensions, the classi�cation errors became signi�-
cantly lower in almost all cases, compared to a baseline based on MFCCs
or results reported in the previous work.

Keywords: Musical genre recognition · Deep neural networks · Transfer
learning · Interpretable features · Evolutionary feature selection.

1 Introduction

Many music classi�cation tasks in the audio signal domain are nowadays solved
with the help of deep neural networks. The price for achieving very high accuracy
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of classi�cation models is often a long training time, lower interpretability, and
danger of over�tting due to huge number of trainable parameters. Traditional
�shallow� methods built upon manually engineered features o�er an alternative,
although typically leading to a lower classi�cation performance. However, in
some scenarios, where a decision for a target class can be theoretically explained
using some mid-level, semantic properties, there exists an opportunity to apply
jointly deep and shallow classi�ers trying to combine their advantages and reduce
their individual drawbacks.

Recognition of musical genres or styles presents such a scenario. Genres,
sub-genres, personal preferences, or mood-related tags are usually de�ned either
by experts or listeners based on some more or less clear semantic properties,
like the instrumentation, applied digital e�ects, details of harmonic structure,
or characteristics of melodic lines. Then, it is possible to train deep neural net-
works only once for the prediction of these �mid-level� properties, and integrate
a simple, fast, and potentially more interpretable classi�er for the prediction of
�high-level� target categories over and again. This procedure very well describes
the situation where listeners de�ne di�erent personal categories selecting only a
few tracks that either perfectly match or mismatch the target class.

In this work, we introduce a framework which integrates both deep and tra-
ditional classi�cation models implementing a transfer learning approach. In the
�rst step, deep models are trained with convolutional neural networks to predict
harmonic, instrument, and segment statistics, using several annotated datasets.
Then, these models are applied to extract predictions for another dataset of
music pieces with annotated genres which serve as high-level musical categories.
Based on these predictions, various statistics for time frames and complete tracks
are saved as features. Finally, these features are used to train a shallow classi�-
cation method (random forest or support vector machine) to predict genres. To
estimate particularly useful dimensions for di�erent genres, an evolutionary fea-
ture selection is additionally applied. The results show the high potential of the
proposed framework. In combination with evolutionary feature selection, deep
features achieve lower classi�cation errors for all tested genres using both applied
shallow classi�ers, compared to the baseline using MFCCs, but also in almost
all cases compared to results reported in the previous work.

The remainder of this paper is organized as follows. Section 2 presents some
related work on deep learning and musical genre recognition. Section 3 summa-
rizes deep semantic features used in our study. Section 4 describes the setup of
our experiments. Section 5 discusses the results. In Section 6, the most relevant
�ndings of the study are outlined and some ideas for future work are provided.

2 Related Work

Deep neural networks have been shown to be e�ective for many music infor-
mation retrieval (MIR) classi�cation tasks. Often, the architectures have been
adopted from the image recognition domain [10,21]. In particular, convolutional
neural networks (CNNs) [11] play an important role, with Mel frequency spectro-
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grams as (image-like) 2D-input [5]. For example, the recognition of predominant
instruments was addressed in [8] and segment recognition in [7].

Musical genre recognition is one of the most widely explored classi�cation
tasks in MIR [23]. However, it has some problematic issues, e.g., genre tax-
onomies may be very distinct [17], and frequently applied evaluation measures
are not optimal [24]. Nevertheless, genres represent examples of high-level mu-
sical categories. Also for genre recognition, CNN-based approaches have been
proposed and successfully applied [31].

Deep learning on small datasets still may be problematic because of too many
trainable parameters, even when techniques like dropout layers or data augmen-
tation may increase the robustness of classi�cation models. Shallow classi�ers
usually are more suitable to this, if deep learners are not heavily customized [18].
The idea of combining deep and shallow classi�ers for genre classi�cation was
presented in [27]. In the experimental study, however, only instrument statistics
were integrated as deep features for genre recognition, as an alternative to low-
level signal descriptors and an evolutionary based approximation of instrumental
texture. In [16], deep features were also used for multi-modal genre recognition.

A more general concept to use mid-level predictions as features for the pre-
diction of high-level categories can be found, e.g., in [1], where so called anchors
were designed to measure similarities between music pieces, or in [29], where su-
pervised models were trained to predict expert annotations like instrumentation,
moods, or vocal characteristics.

Also, transfer learning has been applied to genre and tag prediction earlier
[25,4]. It always shows high potential whilst introducing additional di�culties, for
instance, when deep features are too specialized for the source task. Nevertheless,
transfer learning is a highly promising direction for future machine learning based
classi�cation tasks [32].

3 Deep Semantic Features

Figure 1 illustrates a general overview of our approach. CNN models which
predict harmonic properties, instrument, and segments are trained using four
datasets with respective annotations. Then, their predictions are used to calcu-
late deep semantic properties for complete tracks or shorter time frames (171
harmonic, 328 instrument, and 30 segment properties, 529 dimensions in total)
from the 1517-artists dataset [20] with genre annotations. These features are ei-
ther all combined to create traditional classi�cation models for genre recognition,
or the most relevant dimensions are identi�ed using evolutionary multi-objective
feature selection, which simultaneously minimizes the classi�cation error and the
number of selected feature dimensions.

3.1 Harmonic Properties

Recently, the modeling of complex tonal relationships has received attention
from the MIR community, for example, with a surge of models for automatic Ro-
man numeral analysis, which provide key-and-chord information simultaneously
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Fig. 1. Overview of data �ow in the proposed classi�cation framework.

[15,14,13]. Sometimes, the tonal information is computed concurrently [15,14]
and sometimes in a modular fashion [6,13].

Although most of these comprehensive automatic chord recognition models
have been trained on symbolic music �les, the input representations often re-
semble the information contained in an audio chromagram extractor [12]. Using
this to our advantage, we adapted a recent approach, AugmentedNet [15], to
operate with audio chromagram features instead of symbolic ones. The Aug-
mentedNet model provides multitask outputs related to the harmonic rhythm,
chord, and key information of the music. More speci�cally, in the latest version
of the network4 these include one output predicting the segmentation of the
chords (harmonic rhythm), two outputs predicting changes of key (local key and
tonicized key), and six outputs predicting diverse aspects of the chords (Roman
numeral class, pitch class set, and a four-note arrangement of the chord as a
bass, tenor, alto, and soprano notes). The four-note arrangement of the chord
is a prediction of each individual note in the chord, arranged in ascending or-
der from the bass, modelling each of those notes as a separate output in the
multitask layout.

Using this model, we extract mid-level harmonic features to be used for genre
classi�cation. Figure 2 shows the architecture of the AugmentedNet.

Table 1 summarizes 171 statistics after AugmentedNet predictions, which are
used as deep features for genre recognition. All of them are calculated for time
frames of 4s with 2s step size, which are later used as inputs / classi�cation
instances in genre recognition.

4 https://github.com/napulen/AugmentedNet, accessed on 31.01.2023.

https://github.com/napulen/AugmentedNet
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Fig. 2. Architecture of the AugmentedNet. The parameters (�lter sizes for convolu-
tional layers, activation functions, GRU layers) are provided in brackets. The numbers
of neurons per layer are provided in squared brackets.

3.2 Instrument Predictions

For the prediction of instruments, two datasets were considered to train the
neural networks. The �rst one consists of 5,000 samples and chords generated
by mixing of individual instrument samples as described in [27]. 51 di�erent in-
struments from within and beyond Western music contribute to these examples,
many of them represented with several distinct instrument bodies. A CNN after
[8] was trained with the Mel spectrograms to output a relative strength of each
instrument in the mix (contribution to its overall energy). The second arti�cial
audio multitracks (AAM) dataset5 contains 3,000 arti�cially composed music
tracks synthesized with real instrument samples using 31 instruments as a sub-
set of instruments from [27]. Here, the Mel spectrograms were estimated only
for 2s frames starting with annotated onsets. Figure 3 presents the architecture
of the CNN for instrument recognition.

Table 2 summarizes 328 statistics after instrument predictions, calculated for
time frames of 4s with 2s step size.

3.3 Segment Statistics

Classi�cation models to predict musical segments are trained using the SALAMI
dataset [22] and an arti�cial track dataset [28] using a CNN after [7]. While
SALAMI boundary annotations do not contain additional information, the an-
notations of the arti�cial track dataset do list details of the changes in instru-
mental texture, tempo, and key between the musical segments, so that it was

5 https://doi.org/10.5281/zenodo.5794629, accessed on 31.01.2023.

https://doi.org/10.5281/zenodo.5794629
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Table 1. Deep harmonic properties estimated for classi�cation frames of 4s with 2s
step size. The harmonic rhythm features are related to the chord segmentation; the
bass, tenor, alto, and soprano features are predictions of each individual note in the
chord, arranged in ascending order from the bass; similarly, the roman numeral feature
is related to the speci�c class of Roman numeral of the chord; the local and tonicized
key features are related with key predictions (e.g., modulations). Dim.: the number of
all individual feature dimensions in the related feature group.

Features Dim.

Predictions trained with AugmentedNet

Mean and standard deviation of harmonic rhythm 1�2
Relative frequency of speci�c notes in the alto 3�24
Relative frequency of speci�c notes in the bass 25�47
Relative frequency of speci�c roots of local keys 48�71
Relative frequency of speci�c notes in the soprano 72�92
Relative frequency of speci�c notes in the tenor 93�112
Relative frequency of speci�c roots of tonicized keys 113�136
Relative frequency of speci�c roman numerals 137�160
Relative frequency of modes (major or minor) 161�162
Total number of di�erent symbols 163�171

Table 2. Deep instrument features estimated for classi�cation frames of 4s with 2s
step size. Dim.: the number of all individual feature dimensions in the related feature
group.

Features Dim.

Predictions trained with chords

Mean relative strength of 51 predicted instruments
(acoustic and electric guitar, organ, piano and electric piano, viola, violin,
etc.)

1�51

Standard deviation of the relative strength of 51 predicted instruments 52�102
Minimum relative strength of 51 predicted instruments 103�153
Maximum relative strength of 51 predicted instruments 154�204

Predictions trained with arti�cial tracks

Mean relative strength of 31 predicted instruments
(subset of 51 instruments)

205�235

Standard deviation of the relative strength of 31 predicted instruments 236�266
Minimum relative strength of 31 predicted instruments 267�297
Maximum relative strength of 31 predicted instruments 298�328
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Fig. 3. Architecture of the CNN after [8]. The parameters (�lter sizes for convolutional
layers, activation functions) are provided in brackets. The numbers of neurons per layer
are provided in squared brackets.

possible to train four di�erent CNN models using annotations of either individ-
ual boundary types or all segment boundaries. Figure 4 presents an overview of
the CNN architecture used for segment boundary prediction.

Table 3. Deep segment statistics estimated for complete audio tracks. Dim.: the num-
ber of all individual feature dimensions in the related feature group.

Features Dim.

Predictions trained with SALAMI

Number of segments 1
Mean segment length 2
Standard deviation of the segment length 3
Maximal segment length 4
Minimal segment length 5
Mean deviation of segment length 6

Predictions trained with arti�cial tracks

Segment statistics as for SALAMI, trained to detect all boundaries 7�12
Segment statistics as for SALAMI, trained to detect instrument boundaries 13�18
Segment statistics as for SALAMI, trained to detect key boundaries 19�24
Segment statistics as for SALAMI, trained to detect tempo boundaries 25�30

Table 3 lists 30 segment statistics derived from predicted boundaries. They
are estimated for complete audio tracks, and the same values are assigned to all
4s classi�cation frames.
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Fig. 4. Architecture of the CNN after [7]. The parameters (�lter sizes for convolutional
layers, activation functions) are provided in brackets. The numbers of neurons per layer
are provided in squared brackets.

4 Setup of Experiments

For the recognition of musical genres, we use a publicly available dataset 1517-
artists with 19 annotated genres [20].6 Each binary genre classi�cation task uses
a training set of randomly selected 16 �positive� tracks from the selected genre
and 18 �negative� tracks from all remaining genres (one track per genre). The
number of tracks in the training set is explicitly selected to be rather low, as in the
real-world situation, when a listener will try to avoid high e�orts selecting many
tracks to train an automatic music classi�cation or recommendation system.
For the evaluation of feature selection (see below), an optimization set of 228
tracks (12 per genre) is used. For the �nal independent evaluation of feature
sets presented in the last iteration of evolutionary feature selection, a test set

compiled from other 228 tracks (12 per genre) is taken into account. An artist
�lter was applied before the building of training, optimization, and test sets, so
that all of them contain distinct tracks by di�erent artists.

Classi�cation models for genre prediction are trained with random forests
[3] (with a default number of 100 trees) and linear support vector machines
[30] using RapidMiner [9] integrated into the AMUSE framework [26]. While
random forests train an ensemble of pruned decision trees, have only a few hy-
perparameters to setup, and are typically very robust to over�tting, support
vector machines allow for linear separation between classes using transforms to
more feature dimensions. Because of uneven distribution of positive and negative
tracks in the test set in a binary classi�cation scenario, the evaluation uses bal-
anced relative error eb which is de�ned as a mean error for positive and negative
tracks:

6 http://www.seyerlehner.info/joomla/index.php/datasets, accessed on 31.01.2023.

http://www.seyerlehner.info/joomla/index.php/datasets
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eb =
1

2

(
fn

tp+ fn
+

fp

tn+ fp

)
, (1)

where tp is the number of true positives (tracks correctly predicted as belonging
to the genre), tn is the number of true negatives (tracks correctly predicted as
not belonging to the genre), fp is the number of false positives (tracks wrongly
predicted as belonging to the genre), and fn is the number of false negatives
(tracks wrongly predicted as not belonging to the genre).

Because of the high overall number of 529 deep feature dimensions, some of
them may be too irrelevant or noisy, depending on the particular genre to pre-
dict. Therefore, in an additional experiment, evolutionary multi-objective feature
selection is applied to select the most relevant features after [29]. Evolutionary
algorithms are a good choice here, as they explore a large number of di�erent
combinations of feature dimensions, applying a random mutation which selects
or deselects individual dimensions to train the classi�er. For the multi-objective
optimization of two criteria, the minimization of eb and the minimization of the
number of selected feature dimensions, the S metric selection evolutionary multi-
objective algorithm (SMS-EMOA) [2] was adopted. For each genre, 10 statistical
repetitions are conducted, each based on 1,000 evolutionary generations, with a
population size of 50 (number of feature sets under investigation). For further
implementation details, we refer to [29].

5 Discussion of Results

Table 4 provides a summary of results with balanced relative errors for all 19 gen-
res and di�erent feature sets: individual deep feature groups, as well as their com-
bination using all 519 dimensions, and results after evolutionary multi-objective
feature selection. The top half of the table contains the test errors achieved by
random forests, and the bottom half by support vector machines. As a baseline
to compare with, we have also trained classi�ers using a set of 13 Mel frequency
cepstral coe�cients (MFCCs) [19] which were originally developed for speech
recognition, but have also been frequently used in music classi�cation tasks.
Further, we included in the table the best results from [27]; however, below we
explain why it is hard to fairly compare them to the results of our study because
of some di�erences in the experimental setup.

The results show that the performance of deep features varies very strongly
and depends on the genre, and some errors are rather high (a random classi-
�er would achieve an expected error of 0.5). However, please note that several
challenges do exist in our application scenario. First, the training sets are quite
small, as in real world situation where listeners wish to de�ne a category with-
out many attempts, and based on a limited number of selected prototype tracks.
Second, the deep features are trained on other datasets, often with limitations.
E.g., AugmentedNet is compiled only with classical music; arti�cial tracks used
to train models for the prediction of instruments and segments are composed
by an algorithm and thus do not perfectly represent commercial music. So, the
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Table 4. Test eb for 19 musical genre recognition tasks. [27]: the best results reported
in that work (however, they are not completely comparable, see the text); MFCCs:
Mel frequency cepstral coe�cients; Harm: deep harmonic features listed in Table 1;
Inst: deep instrument features listed in Table 2; Segm: deep segment features listed in
Table 3; All: all deep features; All-FS: the best feature set after evolutionary feature
selection. Bolded values are the best (smallest) for each genre in the current study. A
bolded value using italic font marks a sole case where an error of [27] was lower than
the lowest error in our study.

Random forests

Genre [27] MFCCs Harm Inst Segm All All-FS

Alternative and Punk 0.1928 0.2847 0.4861 0.3148 0.4375 0.3218 0.2431
Blues 0.3170 0.4028 0.3727 0.3495 0.4954 0.4259 0.1921
Childrens 0.3880 0.5069 0.5116 0.4329 0.3148 0.3102 0.2685
Classical 0.0929 0.1250 0.5231 0.0995 0.2106 0.2083 0.0833
Comedy and Spoken Word 0.2214 0.3333 0.3634 0.3125 0.2894 0.3125 0.2407
Country 0.2350 0.3472 0.4190 0.2199 0.3843 0.3403 0.1273
Easy Listening 0.2904 0.2894 0.4537 0.3542 0.3542 0.3866 0.2245
Electronic+ 0.1487 0.3843 0.2731 0.0926 0.3472 0.2454 0.0370
Folk 0.2682 0.3935 0.4236 0.3449 0.5440 0.3264 0.1852
Hip-Hop 0.1240 0.3495 0.4954 0.1065 0.2477 0.2824 0.0880
Jazz 0.3123 0.3889 0.3681 0.3519 0.5231 0.4514 0.2523
Latin 0.3049 0.5069 0.5694 0.4028 0.5231 0.3704 0.2940
New Age 0.2349 0.3056 0.5139 0.2731 0.3773 0.3750 0.1505
R'n'B and Soul 0.2534 0.2731 0.4144 0.2500 0.4213 0.2616 0.1898
Reggae 0.1941 0.3194 0.5069 0.2454 0.4375 0.3912 0.1875
Religious 0.3759 0.4352 0.3634 0.3912 0.5093 0.3611 0.2523
Rock and Pop 0.2346 0.2870 0.5579 0.2894 0.6273 0.2963 0.1343
Soundtracks and More 0.2652 0.2708 0.5926 0.3079 0.4190 0.3750 0.2616
World 0.4059 0.3403 0.4144 0.5069 0.5046 0.4745 0.2662

Support vector machines

Alternative and Punk 0.1656 0.2593 0.4282 0.2546 0.5000 0.2639 0.2060
Blues 0.3030 0.4074 0.3449 0.2546 0.5000 0.2847 0.2153
Childrens 0.3366 0.5185 0.5162 0.4769 0.5000 0.5000 0.1944
Classical 0.0885 0.0903 0.4190 0.0810 0.5000 0.1574 0.0833
Comedy and Spoken Word 0.2360 0.3542 0.3519 0.3426 0.5000 0.2431 0.1782
Country 0.2247 0.3565 0.4352 0.2407 0.5000 0.2940 0.1319
Easy Listening 0.2980 0.2315 0.4514 0.4259 0.5000 0.5000 0.2477
Electronic+ 0.1448 0.2245 0.3380 0.1412 0.5000 0.1806 0.0532
Folk 0.2621 0.3449 0.4190 0.3495 0.5000 0.4167 0.1736
Hip-Hop 0.1201 0.2431 0.5185 0.0671 0.5000 0.5000 0.0810
Jazz 0.2680 0.4190 0.2708 0.3588 0.5000 0.3356 0.2338
Latin 0.3168 0.4514 0.5509 0.4838 0.5000 0.5602 0.2593
New Age 0.2122 0.2685 0.4745 0.2894 0.5000 0.5000 0.1921
R'n'B and Soul 0.2594 0.3380 0.4514 0.2593 0.5000 0.4236 0.2014
Reggae 0.1872 0.2546 0.5301 0.2523 0.5000 0.3449 0.1690
Religious 0.3751 0.3981 0.4005 0.3935 0.5000 0.3912 0.2269
Rock and Pop 0.2390 0.2014 0.5648 0.2917 0.5000 0.4120 0.1389
Soundtracks and More 0.3108 0.2593 0.5231 0.3773 0.5000 0.3403 0.2431
World 0.3604 0.3472 0.4954 0.4306 0.5000 0.3495 0.2731
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robustness of deep features is obviously sometimes limited, when they are calcu-
lated for other data. Another di�culty is that some genres like Childrens, Rock
and Pop, or World are very ambiguously de�ned. Still, for 14 of 19 categories
using random forests and 12 of 19 categories using support vector machines,
deep features or their combination are better than models trained with MFCCs.
Sometimes, integration of all deep features leads to larger errors compared to
the errors of the individual groups, underlining the suggestion that simply using
more features is not always the best solution (the curse of dimensionality).

When all features from individual feature groups are compared, instrument
statistics seem to be the most relevant; the errors achieved with this group are
smaller than from all other groups for 14 of 19 categories using random forests
and 18 of 19 using support vector machines. With random forests, harmonic pre-
dictions are the best for genres Religious and World, and segment predictions for
Childrens and Spoken Word. Segment descriptors did not work su�ciently with
support vector machines which predict only one class in all cases. A potential
explanation is that the number of dimensions was in that case too low for this
classi�er.

When all groups are combined (column �All�), the errors are lower than for
individual feature groups only for 4 genres for both classi�ers. This strengthens
the suggestion that too many dimensions are irrelevant for a particular genre, and
feature selection may help to identify the most relevant ones. This is con�rmed
by values in the column �All-FS�, which report the smallest test errors achieved
after evolutionary feature selection as described in Section 4. Only for Classical,
the error achieved with deep instrument features is smaller than after feature
selection. Even if this seems to be peculiar at the �rst glance, the explanation
is that feature selection is strictly evaluated using an independent test set for a
better measurement of its general performance, but the evaluation of feature sets
during the optimization process is done on the optimization set. So, theoretically,
if a very informative feature dimension for the test data would not belong to the
very best dimensions for the optimization data, it will not contribute to the �nal
output of the algorithm.

Finally, we may compare the results to the best reported errors of the previ-
ous work [27]. They show that in all but one case the smaller errors are achieved
using our large deep feature set. However, it is important to mention that the
comparison is not very fair, because in our study the application of feature selec-
tion helped to identify the most relevant feature dimensions, and theoretically
some individual timbral or approximative descriptors from [27] could contribute
to �nal feature sets. Further, despite of the same genre labels and similar setup
of classi�ers, the distribution of data was not the same: in [27], larger training
sets of 72 tracks were used, and in our experiments we had to reserve enough
artist-independent tracks for a separate optimization set for the evaluation of
feature selection.
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6 Conclusions

In this paper, we have applied a transfer learning approach, �rst training several
deep convolutional neural networks to predict harmonic, instrumental, and seg-
ment characteristics, and then using two traditional shallow classi�ers predicting
genres based on those deep features. Such a combination of deep and traditional
methods can save a lot of resources, as the extensive training of all deep models is
done only once, but the prediction of semantic musical properties only one time
per track, and the training and classi�cation of genre recognition, which may be
repeated over and again for di�erent listeners and application scenarios, can be
conducted signi�cantly faster based on classi�ers with only a few parameters.

The results showed that deep features are quite successful and contribute
to relatively low errors in a challenging application scenario, where the sizes
of training sets are very small, as in the typical real-world situation. However,
there still exist a large number of noisy and irrelevant dimensions�partly be-
cause transfer learning may not always allow for the extraction of very robust
characteristics�but also simply because di�erent classi�cation categories have
very distinct properties. Thus, the application of feature selection which itself re-
quires some costs, seems to be essential and complements the classi�cation algo-
rithm pipeline, leading to smaller classi�cation errors for all 19 genres compared
to MFCC baseline and all deep features, for 18 genres compared to individual
deep semantic feature groups, and for 18 genres compared to errors reported in
the previous work.

In future work, we plan to integrate more deep features, but also to improve
their robustness. A �rst promising direction is to include more diverse genres into
datasets involved to train deep models for prediction of semantic music prop-
erties. Additionally, more data augmentation methods can be applied to the
annotated data for the training of deep features. Another relevant contribution
to justify the application of deep learning would be a strict statistical compari-
son of �deep� and �shallow� features for the recognition of genres. However, such
a comparison is not always straightforward: in preliminary experiments, we have
already extracted shallow instrument and segment features using random forests
and the same training data as for deep neural networks, but the performance was
very poor, potentially, because the Mel spectrograms could not provide enough
information for the training of this classi�cation method. Another promising
implementation will be to integrate more harmonic analysis features from Aug-
mentedNet, which as a completely novel approach proved solid and successful
for genre recognition.
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